
SED 9 Transcript

EPISODE 984

[INTRODUCTION]

[0:00:00.3] JM: The JavaScript ecosystem stretches across front-end, back-end and 

middleware. There are newer tools, such as GraphQL, Gatsby and WebAssembly. There are 
frameworks like React, Vue and Angular. There's complex data handling with streams, caches 

and TensorFlow.js.

JavaScript is unlike any other ecosystem, because a single language can be used to construct 
every part of an application. Because JavaScript is used for such a broad spectrum of use 

cases, the amount of tooling available can be intimidating to someone new to the ecosystem.

Kevin Ball is a host of JS Party, a podcast on the changelog network. Kevin joins the show to 
give his perspective on the JavaScript ecosystem. In this episode, we discussed ES modules, 

the jam stack and the growing number of tools, libraries and workflows used by JavaScript 
developers.

We are hiring a software engineer who can work across both mobile and web. This role would 

work on softwaredaily.com, which is a Vue.js application, our iOS app and our Android 
application. We're looking for somebody who is very flexible and who learns very quickly and 

can produce high-quality code at a fast pace.

If you're interested in working with us, send me an e-mail, jeff@softwareengineeringdaily.com. 
We are looking for somebody who's hungry and somewhat entrepreneurial. I would love to work 

with you if you are well-versed and a fast learner. Just send me an e-mail, 
jeff@softwareengineeringdaily.com.

[SPONSOR MESSAGE]

[0:01:46.6] JM: As businesses become more integrated with their software than ever before, it 

has become possible to understand the business more clearly through monitoring, logging and 
advanced data visibility.

© 2020 Software Engineering Daily 1

mailto:jeff@softwareengineeringdaily.com


SED 9 Transcript

Sumo Logic is a continuous intelligence platform that builds tools for operations, security and 
cloud native infrastructure. The company has studied thousands of businesses to get an 

understanding of modern continuous intelligence, and then compiled that information into the 
continuous intelligence report, which is available at softwareengineeringdaily.com/sumologic.

The Sumo Logic continuous intelligence report contains statistics about the modern world of 

infrastructure. Here are some statistics I found particularly useful; 64% of the businesses in the 
survey were entirely on Amazon Web Services, which was vastly more than any other cloud 

provider, or multi-cloud, or on-prem deployment. That's a lot of infrastructure on AWS. Another 
factoid I found was that a typical enterprise uses 15 AWS services. One in three enterprises 

uses AWS lambda. Appears serverless is catching on. There are lots of other fascinating 
statistics in the continuous intelligence report, including information on database adoption, 

Kubernetes and web server popularity.

Go to softwareengineeringdaily.com/sumologic and download the continuous intelligence report 
today. Thank you to Sumo Logic for being a sponsor of Software Engineering Daily.

[INTERVIEW]

[0:03:36.7] JM: Kevin Ball, welcome to Software Engineering Daily.

[0:03:38.8] KB: Hey, Jeff. Good to be here.

[0:03:40.3] JM: I'd like us to take a tour through the modern world of JavaScript. The place I'd 

like to start is ES modules. Explain what an ES module is.

[0:03:50.7] KB: Well, let's start by going back a little bit to talk about how modules in JavaScript 
evolved over time. Unlike some languages that start with this concept of code isolation and 

modules and things like that, JavaScript when it originated, everything was in global scope. 
There was no concept of a module and separating things and pulling things out, because it 

started as a play language on the web.

© 2020 Software Engineering Daily 2



SED 9 Transcript

Then as people started to do more serious software engineering with JavaScript, they wanted to 

use good practices, like code isolation and things like that. Initially, there were a bunch of what 
you might call user space solutions to that; folks who basically built up using the language as it 

existed, ways to create modules. That's where you get things like AMD, which is one of the first 
specifications, you could call it. It was essentially once again, a user space specification. If you 

write your code in this way, it will work with this tooling and we can load it dynamically and you 
get nice isolation and things like that.

Over time, the language became more mature and folks started saying, “Hey, we should 

actually have a first-class solution to this.” The first closed thing we got to that was when 
Node.js came around and they said, “Hey, we're writing server-side packages. We need a way 

to do this. We're not going to be shipping stuff up to the browser. We're not isolated in the same 
way. We don't have as limited scope in the same way. We're just going to make something 

happen,” and that was based more or less on AMD and CommonJS, which is another 
specification that came on that. That became the de facto standard is node and require, which is 

this CommonJS approach.

Then it went up one more level and it said, okay, node while very large and very popular and 
able to drive this de facto standard, that's not actually the language. We need a language level 

solution for how we encapsulate code and allow it to load in different ways. That was when ES 
modules evolved. This is something coming down from the TC39 specification community, the 

ECMAScript specification, where this is how modules function in the language of JavaScript as 
defined at the spec level. It's no longer user space. This is actually baked into the language and 

accessible.

Now because it's the web and it's messy and all these other things, there's been all these back 
and forth about okay, what about file extensions and how does this change different things? 

Because many of those de facto standards around node had built up lots of tooling and magic 
around this. It would just work in lots of ways that turned out to not actually work when you try to 

do them in cross-environment situations, like how does this work in a browser as compared on a 
server?

© 2020 Software Engineering Daily 3



SED 9 Transcript

There's a lot of stuff there that has really been getting hammered out and still coming in, but 

that's the high-level is ES modules are the language level. Now we're bringing it down into the 
actual specification solution to a problem that's been solved in user space for years.

[0:06:41.1] JM: A classic example of a module that we needed is jQuery, right? jQuery is this 

big blob of things that we need out of our JavaScript infrastructure. Historically, we would just 
import it on a global basis and we would have it available to our entire JavaScript application. 

That was not perfect, but it did the trick. What is wrong with that architecturally? Why is it 
problematic to have a global variable?

[0:07:15.4] KB: Why is it problematic architecturally to have a global variable? I mean, this is 

actually an interesting question, because I think that's a lesson that gets over-applied and it gets 
fought about a lot in the web world when you start talking about CSS, which is still in many ways 

global in different ways. The fundamental challenge with having things that are global is it's 
really easy to break them. If you're trying to pull in code from lots of different places that have 

perceptions about what this thing is and is it going to be there or not going to be there and can I 
manipulate it, if there's just one, then those things can mess with each other and break with 

each other.

Especially if you look at the JavaScript ecosystem today, the trend is towards lots and lots of 
small packages. The tooling around packages and package installation and dependency 

management is so good that people said, “Well, why have large packages when it's just as easy 
to do 10 small packages and then each one of those has a tiny surface area I can test and do 

things?” That ecosystem doesn't work if everything is global, because if I'm installing a 1,000 
packages and each one is depending on something global that they can actually mess around 

with and mess up, very quickly I'm going to end up in a territory where one of those is expecting 
one thing, but the other one has already manipulated it in some way, and so it's not quite 

matching expectations.

If you're going to be integrating different pieces of code where you don't control everything, 
which is fundamental to modern software development in general, right? Old days you look back 

browser applications, they're relatively simple, they're small. The entire code base can be 
owned by one person or one team. Whereas nowadays, if you look at a modern web 

© 2020 Software Engineering Daily 4



SED 9 Transcript

application, look at Gmail, or Facebook, or one of these really advanced products, they've got 

maybe half a million lines of JavaScript.

If each team that's working on that, that's probably spread across five, six, 10, 20 teams. If each 
one is able to map with these global variables, you're going to shoot each other in the foot real 

quick.

[0:09:17.9] JM: Just to revisit, what problem do ES modules solve?

[0:09:22.8] KB: ES modules solve how do I isolate code into its own package essentially, 
whether it's within a single application, or package, or an external one, and reliably pull that into 

my own application or into another package to use? It's the same problem that essentially gems 
– It's a little more complicated, because it's also how you do code imports. You could think of a 

package, an ES module, it's the equivalent of even just importing code, like it built into the 
language of Python, or Go, or something like that where you can import code from one fi le into 

another fi le, that literally did not exist as part of the language before. It was packed together 
with user space tools that would put that together for you, right?

It's this fundamental problem that most languages had built in from the start. You wouldn't 

imagine writing a Python application where you couldn't import code from one file into another 
file. That was all user space solutions. That wasn't part of the language prior to ES module.

[0:10:27.2] JM: Why have ES modules been controversial?

[0:10:31.4] KB: Well, partly because they're in the web. The web, it's probably the – I don't think 

it's out there to say that the web is the widest and most diverse set of software stuff that exists, 
right? It's you have things that are running in a distributed environment across every device 

known to man, you have no control over how this thing is running, where this thing is running, 
other than it's in the browser. People did all sorts of crazy stuff.

On top of, you've got server-side solutions of JavaScript with node where you have that more 

traditional environment, there were already solutions that existed there that had been built up, 
that are subtly incompatible with ES modules. You have the JavaScript language being specified 

© 2020 Software Engineering Daily 5



SED 9 Transcript

by folks who are mostly concerned about the web. They're mostly people coming from your 

browser companies, thinking about that use case. They're trying to build something that is also 
going to be utilized on the server, where there are already subtly different approaches being 

used.

I think there were also just missteps along the way. There were ways of people trying to make 
them different than just being JavaScript. There is an introduction of okay, we're going to tell 

what's a module and what's not by having a different file extension. That was problematic, 
because in the node world where people were mostly thinking about packages, everything is 

just file extension. It deals with it for you. You don't even have to include it file extension, 
because node has all this magic about looking up, is it here, is it there and what have you? It 

created these situations where you had discrepancies from the way people were used to 
thinking about the world.

One other aspect that I think is worth bringing up here that is pretty interesting and I think also 

relates to why ES modules have been very controversial is in the JavaScript world, we've gotten 
used to using features before they are fully specified, because there is incredible set of tooling 

that essentially allows you to transpile within the language. You can extend JavaScript to add 
new functionality and transpile it back to older functionality. The tooling for this is called Babel. 

It's a transpiler. The original use case was okay, browsers are slow to update. In fact, looking 
back five years, many of them did not automatically update. A user had to go and actually do 

something to update their browser, which meant that even though JavaScript was moving 
forward and adopting features that were valuable in bringing it from being a toy language into a 

your first-world, or a high-productivity, extremely powerful language, you couldn't write code in 
that way and run it on those old browsers, unless you had a way to translate that new syntax 

and this new code back just something those browsers could understand.

The JavaScript world has gotten used to using features and compiling them back to older 
browsers. Now this meant that when people started talking about ES modules and they said, 

“Hey, this is a really cool syntax. We're going to do this.” They could use it before it ever got 
specified, or built into any platform. It was not built in any browser. It was not built into node at 

all. People started using it by using Babel to transpile it and using Webpack and similar bundlers 
to package things together.

© 2020 Software Engineering Daily 6



SED 9 Transcript

However, they were doing that based on the assumption that, “Hey, we can just call it .js file, the 
same way we've called every other JavaScript file we've ever worked with and it'll just work.” 

Then the specification morphed and initially said, “Oh, no. You're going to have to have a 
different file extension for these modules,” because they're really – they're different from the old 

stuff. I think that was fundamentally a misstep, but why it was so controversial was because we 
as a community had already started using these things as a way that we assumed we would be 

able to. Then it turned out that that wasn't going to be quite right.

[0:14:22.6] JM: Well, one way that applications in the JavaScript ecosystem get condensed and 
presented to the end-consumer is through a bundler. Can you explain what a JavaScript bundler 

is?

[0:14:38.4] KB: Yes. This comes from a couple of interesting things. One thing to remember 
whenever you're talking about JavaScript is the number one target for JavaScript is the web. 

That means that any code that someone is going to run has to get loaded by their browser over 
an Internet connection, probably majority of web access now is probably through a mobile 

phone connection. Many of those connections are pretty slow.

There's long-band work on saying how do we make that amount of code that we're shipping out 
to the browser as minimal as possible? Especially when there was no equivalent of assembly 

language out there. I couldn't ship a binary. I had to ship actual JavaScript. Bundlers are the 
next step of going back a number of ways. We had this approach years and years ago where 

we would concatenate all of our files and minify them. What that would get you is hey, I'm going 
to have a single file that has to be loaded, so you don't have to issue a bunch of HTTP requests, 

which is less relevant now that we have HTTP2 and things like that, so it's not as expensive to 
issue more requests, but it's still a thing.

I'm going to concatenate it, so you only have to do a single request, and I'm going to minify it 

which is another one of these transpilation things, where any type of variable name or code 
name or whatever is going to get squashed down to very small letters, single-letter function 

names, etc., etc., and transformed into the – essentially as tightly as I possibly can compress 
this file. Then I'm going to ship that single bundle of JavaScript out to the web.

© 2020 Software Engineering Daily 7



SED 9 Transcript

That's an old tradition. That's been around essentially, certainly as long as I've been doing web 
development, which is I don't want to say how long now. That's been with us more or less since 

the beginning of JavaScript, is we're going to put these things altogether, ship them out. Now in 
the old days when everything was global, you just had to make sure that you were putting those 

files in the right order, so that anything that depended on one thing happened after that thing 
was defined and put them all in a file and go.

In the new days, that dependency is more complicated. It's more complex in a good way. You 

have much finer-grained control of it, because you are importing modules, whether it's ES 
modules, or you're using AMD, or you’re using CommonJS and old-school node modules, you're 

pulling in code from all sorts of different ways in a complex dependency tree. We still want to 
take all of that together, smash it into maybe one file, maybe a set of files, but a small number of 

files and have it all work together.

A bundler is taking charge of that. At core, what a bundler is doing is it's crawling that 
dependency graph, figuring out what is the set of code that you're importing from all these 

different places that is needed to make this thing run, smashing it together into a file, which 
bundlers at a more advanced level may then split out into multiple files for different types of 

optimization; smashing it together, potentially minifying it, potentially doing other things on that, 
so that you have that blob of JavaScript that you can ship up to the browser.

[0:17:38.7] JM: How does a bundler fi t into my workflow as a JavaScript developer? You've just 

given an overview of what purpose it is solving. How does it actually fi t into what I am doing on 
a day-to-day basis?

[0:17:53.5] KB: Hopefully you can ignore it, because somebody else has set it up, because 

they are to this day a nightmare to configure, though there's been progress on that. 
Conceptually, it's the – if you're thinking about this from an old-school software development 

standpoint, it's your make fi le, or it's a piece of how you're making your project. You're writing 
your code, hopefully you don't have to worry about your bundler because it's already set up. 

Then when you're ready to run it, the bundler packages it up and ships it to the browser.

© 2020 Software Engineering Daily 8



SED 9 Transcript

Typically, a set up will have a development mode, which is doing hot reload, so anytime a 

change is made, the bundler will rebundle and automatically refresh your page for you. Then 
when it comes time for deployment, it's just going to make it all up into your final packaged files 

and ship it out.

One concept that may be useful to talk about, there is the concept of an entry file. We’re talking 
about this as a dependency tree. A tree starts at a single root node. What you'll do is you'll tell 

your bundler, “Hey, this is the entry point to my application, or this library, or whatever it is,” and 
it will take that as its starting place, crawl down that tree and then bundle things up into a single 

file that is named predictably and you can customize that or configure that however you want, 
but that started at that single entry point.

In a common setup and a relatively simple setup, you probably have just one entry point. That is 

your top-level file. That's your app.js, or whatever it is. The bundler will crawl down that, 
package it up, you end up with a single app compiled JS that is then ready to run.

[0:19:21.3] JM: Considering we started with a conversation about modules, how do modules 

and the emergence and the rise in popularity of modules, how does that affect the ideal 
workflow that we would have with a bundler?

[0:19:36.9] KB: Chances are it doesn't affect them at all for you. Because if you're using a 

bundler, it's because you're already using some form of modules. In fact, chances are if you're 
writing JavaScript right now, you're probably even using something that looks like ES modules. 

If you're compiling up your code to be a single blob to send out, your bundler config is going to 
stay essentially the same.

The fact that we have ES modules shipping natively to the browser does enable us to do some 

things down the road as more and more of those modules exist and are supported, and you 
could see a world where we don't have to do that same level of bundling, because the browser 

handles all of those imports for us. Day-to-day right now, ES modules is a great way to structure 
your code. The bundler will keep working the way it's been working and I don't think there's any 

advantage to trying to move away from that.

© 2020 Software Engineering Daily 9



SED 9 Transcript

[0:20:29.3] JM: When you say the browser could potentially handle the importing, what do you 

mean by that? What would that look like?

[0:20:37.3] KB: Yeah. Right now in a typical bundled setup, a JavaScript fi le is not loading other 
JavaScript fi les, unless you're explicitly writing JavaScript that says like, “Hey, go and fetch this 

fi le and add it to my HTML, or something like that.” It's not doing that dependency tree crawl. If 
you had an import statement, it wouldn't know what to do with it.

When you add ES modules, it now knows what to do with that. As long as that import statement 

is pointing to a fully qualified path, basically a URL, the browser can pull that, go and get it, 
come back and put it in place and run it as you would need it. That in bundler world, they're 

doing that for you; they're crawling it, they're packaging it up, so those import statements get 
compiled away to we're putting this code in this place and linking things up properly.

From a developer standpoint, chances are it's not going to make that much of a difference to 

you one way or another, which way you do it right now, except it's more of a pain to do it with 
the browser, because you have to do fully qualified paths and all of that. Whereas with a 

bundler, it can be smart and you can set up aliases and you can do all sorts of other smart 
things. I'm far from the biggest expert on ES modules in particular, but on JS Party, we just did 

an episode of that. We were picking the brain of one of the folks who is an expert in this area. 
The overwhelming message I came back from is don't worry about it yet.

If you're writing modules, if you're wanting to explore something new, go out and take your 

modules and make sure they’re ES module compatible and they're shipping that, if you want to 
explore writing tooling in that. If you're a line developer writing JavaScript, just keep using a 

bundler for now. It's not going to hurt you and it's going to work better right now.

[SPONSOR MESSAGE]

[0:22:21.3] JM: Being on-call is hard, but having the right tools for the job can make it easier. 
When you wake up in the middle of the night to troubleshoot the database, you should be able 

to have the database monitoring information right in front of you. When you're out to dinner and 
your phone buzzes because your entire application is down, you should be able to easily find 

© 2020 Software Engineering Daily 10



SED 9 Transcript

out who pushed code most recently, so that you can contact them and find out how to 

troubleshoot the issue.

VictorOps is a collaborative incident response tool. VictorOps brings your monitoring data and 
your collaboration tools into one place, so that you can fix issues more quickly and reduce the 

pain of on-call. Go to victorops/sedaily and get a free t-shirt when you try out VictorOps. It's not 
just any t-shirt, it's an on-call shirt. When you're on-call, your tools should make the experience 

as good as possible. These tools include a comfortable t-shirt. If you visit victorops.com/sedaily 
and try out VictorOps, you can get that comfortable t-shirt.

VictorOps integrates with all of your services; Slack, Splunk, CloudWatch, Datadog, New Relic. 

Over time, VictorOps improves and delivers more value to you through machine learning. If you 
want to hear about how VictorOps works, you can listen to our episode with Chris Riley. 

VictorOps is a collaborative incident response tool. You can learn more about it, as well as get a 
free t-shirt when you check it out at victorops.com/sedaily.

Thanks for listening and thanks to VictorOps for being a sponsor.

[INTERVIEW CONTINUED]

[0:24:11.2] JM: JS Party is definitely a better podcast to dive into for people who are very 

serious about their JavaScript in there. If you want to hear a talk show experience for going into 
the minutiae of JavaScript and more introductory conversations as well, it's definitely a better 

podcast for that. Just channeling my own inner JS Party, for this episode I do want to continue 
down a just a list of things that I've been thinking about, or exploring in other episodes, or things 

that have come up in other episodes that we've done about JavaScript, or front-end 
development.

There is a term, JavaScript fatigue, or tooling fatigue. What does that mean? What are people 

fatigued about? Who is fatigued? Is this new developers, old developers, every developer? 
What are we talking about here?

© 2020 Software Engineering Daily 11



SED 9 Transcript

[0:25:07.3] KB: Great question. This is coming from the fact that the JavaScript ecosystem is 

massive and moves faster than probably any other ecosystem I'm aware of. If you view our 
stats, you can look at for number of packages and different ecosystems and you can look at 

okay, how many PyPI packages can I install with Python? How many Ruby gems are there, 
whatever?

JavaScript is essentially an order of magnitude above everyone else and growing way faster. 

There are 500 new packages, do JavaScript packages added to the NPM registry every day. It 
is ridiculous. The language itself is evolving and evolving relatively rapidly. The language has, I 

think since 2015, there's a new spec published every year and it continues to make advances in 
progress.

What this means is that there's even more than in any software engineering job, there's a 

tremendous hamster wheel effect of trying to keep up, trying to keep up, what's new, what's 
different, what's new, what's different. The approaches that were modern and correct and the 

right way to do it two years ago are perceived now to be old-school and out-of-date and not 
there. Some of this is just perception. I just did an interview with somebody from Etsy and she 

said their mantra is, “We like boring tech.” There's a lot to be said for that, right? You don't have 
to be using the latest and greatest, fanciest JavaScript framework and all of those different 

pieces to be writing good software, not in any way, shape or form.

There is this perception of constantly having to adopt new things, constantly having to adopt 
new changes and that's exhausting. There is some amount of truth to it in that the types of 

things that you can create and write now using a modern JavaScript framework are React, or 
Vue, or Angular, or even one of the more newcomers to the scene like Svelte, the type of 

application you can write the level of dynamic interactivity that you can create in a browser is 
simply worlds beyond what you could do five years ago with a mostly jQuery based application. 

It's incredible. You can write much more productively, because you have all this tooling in place.

There is some real need to learn and to grow and to adopt the new frameworks and 
technologies that are coming available, but so much of it is just perception, is this feeling of 

keeping up and you've got to keep up and there's a treadmill and you can't catch up. That 
creates fatigue.

© 2020 Software Engineering Daily 12



SED 9 Transcript

[0:27:42.1] JM: There is definitely a sense that well, I mean, I think this is one of the reasons 
why there is this really, really rapid pace is there's a sense – there's almost a palpable future 

where front-end development is as easy as dragging and dropping, or as easy as a low-code 
tool, where you're building a user interface with the WYSIWYG and you're easily putting 

together these UI components. You're putting together basically a front-end application that 
does everything you need to do. If you wanted to dig deeper into it and optimize the 

performance of a particular React component, for example, you could do that. You would have 
no problem doing that.

We're not there yet. We are still in a time where the front-end developer has to do a lot of 

debugging and tweaking and typing of code. It's not a drag-and-drop UI experience yet. We still 
need separate roles for the designer and the front-end developer. Although, there does seem to 

be some palpable future where perhaps those two roles will intertwine and hard to know where 
that ends up. I think one thing we could discuss that seems to be hinting at that future is these 

component libraries, where it seems to be there's component systems that facilitate workflows 
between designers and front-end developers, these places where the designer and the front-

end developer can mind-meld. Can you tell me the modern workflow between a designer and a 
front-end developer?

[0:29:31.0] KB: I can. First, I want to push back a little bit on the thesis here. Because I think 

there is this sense of oh, there's all this new stuff we can do that is making things easier. No 
front-end developer that I have talked to feels their job has gotten easier. In fact, there's a sense 

that it's getting more complex, because more and more things are moving to the front-end. It 
used to be that almost all of the front-end work that you were doing was presentational and 

you're doing most of your stuff with HTML and CSS and maybe a little bit of JavaScript, but all 
the heavy lifting and the logic of your application was living on a server. That world is long past.

More and more of the complex software engineering that's going on is moving to the front-end. 

You have logic that's moving there, you have even data management and things like that. 
You've got these complex state management systems, you've got Redux, you've got MobX, 

you've got GraphQL, all these different things going on to manage more and more of what used 
to live in the back-end in the front-end.

© 2020 Software Engineering Daily 13



SED 9 Transcript

I think it is a little bit – there is a sense of, “Oh, my gosh. Drag and drop and no code is getting 
so powerful.” It is, but the result has been that we've continually wanted to do more. In fact, 

we've wanted to do more at a more rapid rate than the tooling has gotten better. The amount of 
complexity that has happened is happening on the front-end has simply skyrocketed relative to 

front-ends a while ago. I think it's good that we're having more tooling. The state of the art of 
what you can do without having to dive into code is going to continue to go forward. We've had 

no code web development systems for forever. We've got WordPress. We've got Squarespace. 
People have been able to build websites forever and even some amount of interactivity.

Whenever you want to go beyond to that, do something new and different, you need to get into 

the code. The amount that we've been wanting to do interesting things there on the front-end 
has far outpaced the ability of that tooling to catch up. The front-end teams at most companies I 

talk to are growing and expanding. More people are feeling the pain of we don't have enough 
skill on the front-end than I see on the back-end as well.

Coming back to the question about design and development and how those two things interact, 

it varies a lot by company, but what we seem to be moving towards is this concept of design 
systems and linked component libraries. Having within design a set of concepts, a set of 

specifications and standards, this is the typeface that we use, here are the font sizes that we 
use, here's the spacing, here are our components, here's how we're thinking about all these 

things, so that when a designer is working on something, they have a fixed library of tools to 
use.

This has been a thing in software engineering for a long time. We love our libraries. We love 

building out reusable bits that we can use over and over again and recombine in different ways. 
Well, that's coming to the design world. Then the translation of that into the front-end is often a 

component library, plus some additional styling stuff around typography and things like that.

When you've got that set up, or when you're moving towards that, a lot of that interaction comes 
back to this discussion of okay, what are the things that we have enabled in our design system 

right now? How do we fit the things that we want to do into that? If we can't, what's a way that 

© 2020 Software Engineering Daily 14



SED 9 Transcript

we can extend that system to do what we want to do now and how does that play out in to our 

component library?

[0:32:54.5] JM: If you think about this future development workflows and I mean, who knows 
what it'll look like. If you think about just some high-level things that we have today, we have 

these driving frameworks. Actually, let's go deep on the frameworks right now and then we'll get 
to more futuristic things. I'd like to level set in the present and talk about the present-day 

frameworks.

To my mind, the main prominent frameworks to talk about are Vue.js and React. I think you still 
have Angular. You still have a lot of people in Angular. You have a thriving angular ecosystem. 

You do have Svelte. People are telling me to do a Svelte episode. I don't know anything about 
Svelte yet. Vue and React are really the two elephants in the room, as far as I can tell, and 

they're thriving, they're growing really quickly. Could you contrast the Vue and the React 
ecosystems for me?

[0:33:55.7] KB: Sure. First, let's talk a little bit about one thing that sometimes gets lost here is 

a lot of these frameworks have a lot in common. We on the front-end have more or less 
universally gone to a model where our development is organized by components and we think 

about the world in terms of components, which accept properties from your parents. You can 
think about that as arguments passed into a function. They maybe have some internal state, 

they maybe don't, and then they have child components. We're building these trees of 
components and the component is the fundamental organizing block.

Now if you look back to the JQuery days or things like that, that was not obvious as the 

development philosophy. That might have been true in the UI, but then the way you were 
organizing your code is different. That has been essentially universally adopted as the 

organizing framework for how we think about front-end frameworks and front-end JavaScript. 
React is doing that, Vue is doing that, Angular is doing that, Svelte is doing that, Amber is doing 

that, Dojo is doing that. Whatever framework you talk about, they’re pretty much – that's the 
approach they're doing.

© 2020 Software Engineering Daily 15



SED 9 Transcript

The positive thing about that is no matter where you start on a framework, if you really dig in 

and start to understand how to do component-oriented development and how to think about 
your code base in that way, you're going to be able to take those skills of that understanding 

from you as you go from framework to framework.

Now to your question particularly about React and Vue, there's a number of differences both in 
the communities and in the way that the code was organized and thought about. I'm going to 

start from just how the projects are run. React is a project from Facebook. They have a heavily 
staffed internal team that are paid by Facebook to work on React. That heavily influences the 

direction of their development. They're very open about that. Dan Abramov is one of the most 
visible members of that core team. He says, “You know what? You all should know, we are 

making decisions based on what Facebook needs. The things that we're doing may not be 
optimal for you if you are not at Facebook scale or complexity.”

That I think shows up in lots of little ways, but it is something to be aware of. I think there's a lot 

of hype around, “Oh, this is the React way to do it. We're going to do it this way,” that actually 
does not scale down very well. It works very well at scale. Then when new folks are trying to do 

it, those practices actually don't work very well always for small applications.
There's a lot of, I almost want to say embrace of complexity in that ecosystem, where to a lesser 

degree than Angular, I think Angular actually goes even more in this direction of they have – The 
learning curve on Angular is really slow and long and it's a very complex framework with lots 

and lots of different interlocking pieces, because the mindset is enterprise and the people 
working on the framework and the primary users of the framework have these massive 

enterprise applications, where they are going to have all that complexity anyway.

Angular scales down very poorly to small applications and just individual components that you 
might embed in a regular vanilla website or things like that. React has a little bit of that problem 

as well. A lot of their time and energy is focused on the needs that Facebook has, which is fine 
and they're open about it. Though one of my wishlist items for the future is that they might put 

React out into a separate foundation, the way they did with GraphQL, so that it can be a little bit 
more responsive to the actual community using it.

© 2020 Software Engineering Daily 16



SED 9 Transcript

Vue on the other hand from a development stance perspective, started as a BDFL style project. 

Benevolent Dictator For Life. Evan You created it. They are in the process of moving to being a 
completely community run organization. He's been essentially delegating more and more pieces 

and giving ownership. There's a well-established core team now with different areas of 
specialization and ownership. I think Evan You is still acting as a bit of a dictator there, but not 

nearly as much. They've adopted a very solid community RFC approach to adding new 
functionality and features and that has very much influenced the development of Vue3, which is 

supposed to launch any day now. That's the approach and development.

I think that actually ends up playing out a little bit in what you see in the communities. The Vue 
community feels much more bottom-up. It feels much more – how would you say it? Global and 

grassroots-driven. The React community is massive. There's lots of people. A lot of the very 
loud voices tend to be your more traditional tech voices. There's a lot of loud white men in that 

community, to not put it too bad. Whereas I feel when I've gone to Vue-related conferences, 
they tend to be much more diverse along gender directions, but also racial dimensions and also 

age dimensions. I found a lot more both young and old ends of the spectrum at Vue 
communities than I have the React, which just seems to be very traditional tech audience-

centered.

In terms of approach using the frameworks, there are some ways that they are pretty different. 
React has very much embraced a functional programming approach. They try to do all sorts of 

things with having immutable state and everything is returning and you're trying to get to very 
functional ways of thinking about the world. Even sometimes when that's very confusing to 

users or to new folks, there's a philosophical approach their.

Vue has not approached that much as much. They've centered around this concept of reactivity, 
where you are changing objects, rather than having immutable objects that then get processed 

and return new things. You're changing objects and observing those changes and having things 
react to those changes.

Interestingly enough, React, though it has that in the word, does not use this concept of 

reactivity. They use state changes as you're doing some functional transformation then 

© 2020 Software Engineering Daily 17



SED 9 Transcript

replacing the state, whereas Vue, you're changing an existing blob of state and things react to 

that.

[0:39:51.0] JM: Totally changing the subject rapidly, because I want to move through several 
different other topics and then get some perspective on where you think the future is headed. 

How would you define the term JAMstack? How has the rise of the JAMstack affected front-end 
development trends?

[0:40:09.9] KB: Great question. First, just simple, what does the acronym mean? JAMstack 

stands for – JAM stands for JavaScript, APIs and Markup. The concept of JAMstack is 
essentially going further and further towards this concept of separated front-end and back-end. 

Many applications have started to be architected, where you will have a JavaScript application 
as your front-end and then some server application that is your back-end. All of the 

communication between those things is via APIs.

Contrast this to I don't know, 10 years ago when most web applications, your server was 
rendering your HTML and then you are also putting out JavaScript that might manipulate that on 

the client. The trend is towards this concept of a SPA, single-page application, where you have 
a JavaScript app that is doing things and maybe it's loaded all at once, or maybe a pre-compiles 

something so you can load a page that's HTML. You have this separated front-end from your 
back-end.

JAMstack is going way in that direction. It's saying, “Okay, let's forget that idea of having a 
server application at all.” Yes, it will still be there, but we'll call it an API, or just APIs. In fact, a lot 

of times we'll try to use third party API, so we don't have to build those pieces ourselves. We're 
going to focus entirely on building this front-end of the application. What does that look like? 

Can we generate it all using JavaScript and markup? Then anything dynamic, we talk to the 
APIs.

Big picture, it's part of this trend towards pre-compilation. We've over time observe that one, it's 

often faster, especially it's more responsive as you go to ship a bunch of JavaScript out and 
then only once that you can cache at a CDN and then only ship data out from your core servers. 

That's one step. Oh, there's some slowness there, because that JavaScript still has to render a 
page that's not responsive right away. Well, what if you could ship, just you could pre-compile 

© 2020 Software Engineering Daily 18



SED 9 Transcript

your HTML and strip your JavaScript? All of that's going out and then all the data is only loaded 

from APIs. We're pre-compiling more and more things. Maybe we could pre-compile all of our 
pages, or almost all of our pages and have those out, put them out on a CDN, so it's very close 

to whoever is loading it, have it load very fast. Then only go back as much as possible, or as 
when you need dynamic data. Only go back to an API, then everything else stay out on what 

they call the edge.

That's the concept that JavaScript, or JAMstack is pushing towards. It's saying, “Let's push 
things further out and let's pre-compiled more.” One of the big frameworks in the JAMstack 

world is this framework called Gatsby, which is a React-based framework for generating 
websites and applications. The concept there is they're trying to pre-compile as much as 

possible. They want to pre-compile every page. Even though you might have your data loaded 
from a database traditionally, maybe you use a WordPress background, or maybe you have a 

traditional database exposed to an API, got a bunch of content there that's going to generate 
your pages, maybe product pages, or blog pages, or what have you, Gatsby is going to go and 

fetch that data not when somebody requests the page, but at compile time.

When you're shipping a new version of your application, it's going to go out, crawl through 
everything it needs to crawl through to get the data to render your pages, pre-render all of those 

pages and then you stick them up on a CDN, so that when somebody tries to load it, it's all 
there right away. It doesn't have to touch any database or processing to get there.

[0:43:41.5] JM: Got it.

[SPONSOR MESSAGE]

[0:43:51.1] JM: When I'm building a new product, G2i is the company that I call on to help me 

find a developer who can build the first version of my product. G2i is a hiring platform run by 
engineers that matches you with React, React Native, GraphQL and mobile engineers who you 

can trust.

© 2020 Software Engineering Daily 19



SED 9 Transcript

Whether you are a new company building your first product like me, or an established company 

that wants additional engineering help, G2i has the talent that you need to accomplish your 
goals. Go to softwareengineeringdaily.com/g2i to learn more about what G2i has to offer.

We've also done several shows with the people who run G2i, Gabe Greenberg and the rest of 

his team. These are engineers who know about the React ecosystem, about the mobile 
ecosystem, about GraphQL, React Native. They know their stuff and they run a great 

organization.

In my personal experience, G2i has linked me up with experienced engineers that can fit my 
budget and the G2i staff are friendly and easy to work with. They know how product 

development works. They can help you find the perfect engineer for your stack and you can go 
to softwareengineeringdaily.com/g2i to learn more about G2i. Thank you to G2i for being a great 

supporter of Software Engineering Daily, both as listeners and also as people who have 
contributed code that have helped me out in my projects.

If you want to get some additional help for your engineering projects, go to 

softwareengineeringdaily.com/g2i.

[INTERVIEW CONTINUED]

[0:45:40.1] JM: Continuing our trend of disjoint topics and then we'll bring some of these 
together, is WebAssembly impacting front-end development today?

[0:45:48.1] KB: Good question. When you say impacting, there's a couple ways I could interpret 

that. One, as your typical JavaScript or front-end developer, no, you're not thinking about it at 
all. However, it's already being included in ways that you're using and you’re not aware of. For 

example, every web developer is using different types of dev tools and looking at when we're 
doing all that minification and compiling of things, you need tooling to be able to go back to what 

your original source code is, so there's these things called source maps that basically map from 
your compiled code to your pre-compiled code.

© 2020 Software Engineering Daily 20



SED 9 Transcript

The tooling that is working on those source maps is written and shipped in WebAssembly, and 

so are a bunch of other libraries. I think your average JavaScript developer, that's going to 
continue to be there, or your average front-end developer, that's going to continue to be their 

interaction with WebAssembly is under the covers. They're going to use a library that happens 
to be implemented in WebAssembly.

What WebAssembly does for you though is it allows folks who are not traditional front-end 

developers to bring, or not traditional web developers to bring their applications to the front-end. 
For example, I talked with a guy last year who he has a gaming engine that he had built with 

Unity. It’s written in C++ and it was functioning – You would download this game engine, 
whatever, and just use it as an installed application. By compiling it to WebAssembly, he built a 

React-based front-end and suddenly, his entire gaming engine and your ability to write games 
was available in the browser.

That's where I think WebAssembly is going to impact the front-end. It's not for how it's going to 

change current front-end developers. For them, it'll most likely be hidden in libraries, just utilize, 
it's another tool in the tool chest, you import it the same way you would JavaScript. What it does 

do is it allows you to bring things that are traditionally not web applications, or people with skill 
sets that are not traditional web development skill sets and move them into the front-end.

[0:47:44.9] JM: Indeed. Impacting us in small ways today, almost inevitably impacting us in big 

ways in the indeterminate time horizon future.

[0:47:54.8] KB: One way to think about the web and browsers is the web is the most widely 
distributed and most popularly used delivery system in the world. It used to be that that was only 

available to documents. It was a document delivery network. Then we added applications, but 
only if you're willing to use the particular programming paradigms and languages, particularly 

JavaScript of the web.

Well, what WebAssembly does is say, “Hey, you know what? Screw that. Whatever 
programming language you want to use, you now have access to the largest app platform in the 

world, way bigger than any mobile app platform, way bigger than any desktop app platform. 
Everybody can use this and you can now access that from whatever language you want.”

© 2020 Software Engineering Daily 21



SED 9 Transcript

[0:48:40.7] JM: Right. Define the term ‘micro front-end’ for me.

[0:48:46.6] KB: Micro front-end is –

[0:48:49.6] JM: You can put it in the context of Twitter.

[0:48:51.5] KB: I'll put it in the context of is something that I think your audience may be more 
familiar with, which is this idea of microservices. Microservices on the back-end have been a 

popular topic for a while, with lots of opinions on whether they're good or not. Essentially what 
they let you do is organize your code base as a set of independent services that can evolve 

independently, that don't have links to each other than via an API and whatever guarantees you 
have on that API.

That has the downside of dramatically increased operational complexity, but the upside of each 

one of these particular things is isolated, probably easier to test and more importantly, can be 
owned and evolved by its own team using their own technology choices without impacting the 

other services. Very valuable particularly in large companies, where you have lots of teams and 
synchronization costs between those teams is very high.

Micro front-ends is saying, “Hey, we can do that same thing on the front-end. Why not? We can 

have this team own this part of the front-end.” Maybe if I'm Amazon or something like that, I 
might have a whole team focused on the navigation. I have another whole team that's focused 

on the product page and I have another whole team that's focused on the shopping cart and all 
these different things. Some folks said, “Okay, well let's let each of those teams make their 

decisions and ship each one of those out as a micro front-end and then they can only interact.”

The challenge there is there's substantially more operational complexity there than there is in 
microservices, because one, you have to be really rigorous about what are the APIs, how do 

they interact each other? Two, because we've got all of these different frameworks and since 
everything's running in the browser, the frameworks themselves have to get shipped out and 

they have to go over the wire to the browser to run it. If you're writing micro front-ends in React 

© 2020 Software Engineering Daily 22



SED 9 Transcript

and Vue and all these other things, anything that's running those micro front-ends needs those 

libraries out there.

In a microservices, I don't have to worry about your servers. It doesn't matter what's running on 
my server, because all that's coming back to you is the data from the API. Micro front-end, you 

can quickly end up – or environment, you can quickly end up in a situation where your friend 
then is loading hundreds of kilobytes, maybe even megabytes of JavaScript to run each of these 

front-ends.

Now there are other solutions. There are folks who say, “Well, we're not going to restrict you 
entirely, but we are going to restrict you to one framework, so they don't end up with that.” Or 

they do some integration layer, where essentially they have a proxy in between that weaves 
together the front-ends, rather than loading them all from directly to the browser. It weaves them 

together rendered output in a proxy server of some sort and then ships that final version out.

There's lots of different implementation things, but the high-level there is it's trying to apply the 
concept of microservices to the front-end, but it turns out there's even more operational 

complexity in getting it right.

[0:51:46.9] JM: Is that to say that this is something that people don't actually use? This is just a 
Twitter talking point?

[0:51:52.6] KB: No. I think there are folks actually using it.

[0:51:54.4] JM: By the way, it basically being the idea like, let's say I'm a sizably large company. 

Let's say I'm Airbnb. I don't think everybody does this, but let's say I'm Airbnb, we want to give 
the developers lots of freedom and we want to give them the ability for Airbnb experiences, they 

can develop their system in Vue and Airbnb, the home sharing platform is developed in Svelte. 
These different teams can work with their different front-end systems and that's all hunky-dory, 

and that's the idea of the micro front-end; it's really the bring your own front-end.

[0:52:34.1] KB: Kind of. Yes, though let me clarify a little bit more. It is not that uncommon to 
have different sections of your application owned by different teams potentially using different 

© 2020 Software Engineering Daily 23



SED 9 Transcript

frameworks. For example, an admin dashboard that's written in Vue, but a customer-facing 

experience that's written in React. Or even an old customer, I was chatting with somebody from 
Etsy and there – I believe it was their internals have been rewritten with React for a long time, 

but the customer facing stuff is all still being rendered by PHP and then there's some jQuery that 
does stuff, right?

That's not that uncommon divided by product area and it's often not that bad, because you don't 

have – often, the same people aren't using the same – all those things at once. Maybe it's 
divided by a user type. In Etsy’s case, might be customers versus shop owners, or even just 

when I go to a page, it's going to be a brand new page refresh, but that's okay, because it has to 
load this new library.

Where micro front-end I think really starts to talk is when you're talking about that subdivision at 

the component level, so I have a single page with a dozen different components on it and this 
component is owned by this team and that component is owned by that team and those things 

can evolve independently, that's where it gets really complicated in terms of allowing fully 
different frameworks and you have to be really thoughtful, or you'll quickly end up in a situation 

where you have catastrophic levels of JavaScript going to the browser.

I think there are people trying to solve this, because there are some benefits to being able to 
isolate things in this way. I think most of the people actually using this still put a restriction. They 

say, okay, you can own a lot of things independently and we're going to stitch them together and 
we're not going to have them as part of the same codebase maybe, but you still have to use 

React. They at least eliminate the multi front-end loading lots and lots of different front-end 
frameworks on the same page load.

[0:54:26.1] JM: Okay. There's a whole bucket of other things that I didn't get to explore with you 

that I wanted to, things like machine learning and Tailwind CSS and GraphQL and so on, and 
maybe those will have to wait for some future conversation or something. One thing I really 

wanted to get your perspective on, just because it's come up in a lot of recent episodes is how 
we do get to this drag-and-drop world, assuming you believe this is a reality. It is happening to 

some extent in the low-code environment. To me, this seems a very important trend.

© 2020 Software Engineering Daily 24



SED 9 Transcript

I mean, I think some people who listen to the show think I've latched on to a brain virus of the 

low-code, no code stuff. To me, it seems this vision of WYSIWYG software development is 
finally coming to fruition in some sense. It's hard to know how immature it is. It's hard to know 

where I stand exactly how widespread the use is. The biggest thing I'm curious about that I feel 
we can actually discuss today is what bridges the gap between these two ecosystems, the low-

code, drag-and-drop, perhaps in many cases proprietary-based interface builder ecosystem, 
versus the build your own from the ground-up JavaScript-based classic framework world? How 

do we bridge the divide between those two ecosystems and what is the nature of the divide as it 
stands today?

[0:56:07.5] KB: Yeah, that's a really interesting question. I think one way to think about this is 

rather than thinking about it as there's a no code world and there's a code world, think about it 
as increasingly powerful abstractions and increasingly powerful tooling. The amount of stuff that 

we can get out of the box today, whether it's front-end or back-end for doing development is 
astounding. Both as a developer looking at tools, like React or Vue on the front-end, or looking 

at managing servers on the back-end with Kubernetes, or not having to manage servers on the 
back-end because you use a platform as a service like Heroku or things like that, the amount of 

stuff that I used to have to worry about that I don't have to worry about at all is shocking.

That is playing out on the UI builder side as well. UI builders have gotten more and more 
powerful, more and more integrated and able to do more and more things. I think those trends 

continue to rise. The question is where is the line where the majority of situations that we are 
wanting to accomplish are below that line of it's already been solved, it's automated away, I just 

have to wire things together.

I think actually, JAMstack is an interesting driver of that. It's pushing things in that direction, 
because it's pushing, it's creating an ecosystem where for example, Zapier is a viable company, 

where I can build a business that is only about creating drag-and-drop relationships between 
third-party services. I can do that, because there's enough demand from people building UIs to 

do that, or there's enough demand from people who are building things on WordPress, or who 
are essentially doing no code right now, that want to do things that traditionally you'd have to 

write code to do, you'd have to run a little server somewhere. Well instead, I'm just going to wire 
them together with Zapier and it'll just go.

© 2020 Software Engineering Daily 25



SED 9 Transcript

I don't think it's a line in the sand, before this point we're going to be coding and after this point, 
we're going to be no coding. I think it's just saying, what is the level of work that we need to be 

doing? What is it that we're trying to accomplish and how much of that can be done without 
writing custom code?

I don't know where the line is today, because I'm actually – I don't honestly care that much about 

no code, because I like coding. I think that code has come very far. I think we're going along 
those lines when we talk about building a bespoke application from the ground-up, there were 

zero people doing that today. Functionally, equivalent to zero, because everyone's building on 
top of a framework like React. Or they're building on top of, even if they're building on top of 

jQuery, right? There's this massively developed piece of tooling that has had thousands of hours 
of time put into it that makes your life easy now.

The typical JavaScript application that you ship may touch or use either in the actual code, or as 

part of the build process over a thousand independent open source packages. You install the 
application template essentially from create React app, which is here's a standard template for 

building your React application and it installs a thousand packages. Most of those for things that 
get built are part of the build system compiled away, but it's touching all those things. That's all 

software. You didn't have to build. Conceptually, it's no code, right? If no code just means code, 
I don't have to worry about it.

Yeah, I think we're already getting there in many ways and people who are doing application 

development right now are sitting on top of the same foundation of the people who are using 
drag-and-drop platforms to create applications. It's the same stuff. It's open source packages 

that are and available API frameworks that interact with each other that anyone can access.

[1:00:04.1] JM: All right. Well, just abbreviated discussion at the end here about software 
podcasting. Podcasting as a way to explore and disseminate information about software 

engineering. You and I both do this thing. How does this fi t in to the educational path of a 
software developer? I mean, we all know that you can only succeed as a software developer if 

you're continually learning. I mean, I guess it does depend on your definition of success, 

© 2020 Software Engineering Daily 26



SED 9 Transcript

because I mean, you can just learn one paradigm of software and just maintain code bases in 

that paradigm for the rest of your life and have a very good living.

I guess, you don't necessarily have to continually do the reinvention thing, but certainly most 
people make some habit out of it. What's your perspective on the software podcasting medium 

and how does it look going forward? Is it a durable medium?

[1:01:10.7] KB: Oh, absolutely. Absolutely. I'm not just tooting my own horn there, because I 
obviously do have a little bit invested in podcasting doing well. For me, podcasting gives you as 

a listener, scalable access to the type of content, or information that you would otherwise have 
to go to a conference to get. We actually on JS Party, we did an episode, amusingly label the 

wonderful thing about tigers. We did this episode on learning and how we learn about different 
things.

One of the things that came up there that I thought was fascinating was different mediums help 

you learn at different levels. Going to a conference is great for learning what you should learn 
about. It's great for getting you excited. It's great for inspiring you. It's great for getting a big 

picture. It's really bad for digging into the nitty-gritty details and building out a technical skill. I 
would put podcasting in that same bucket. Podcasting is a wonderful way to discover what you 

should be learning about. It's a great way to get a sense of how people are thinking about 
things. It's a really bad way to learn a particular tactical skill.

I think that piece, especially if we look in a world that is so incredibly filled with abundance, I 

mean, look at what I mentioned in terms of JavaScript, 500 new open source packages every 
day, figuring out what you should be learning about is a huge part of the challenge of learning. 

What should I learn? Podcasting is a scalable way to disseminate that same type of curation, 
that same type of inspiration and that same type of access to what are the brightest people in 

the field learning about, thinking about, speaking about in a way that you can listen to in your 
pocket as you go for a run. You don't have to travel halfway across the world to go to a 

conference on. You can listen to from anywhere.

[1:03:01.2] JM: Kevin Ball, thank you for coming on Software Engineering Daily. It's been great 
talking.

© 2020 Software Engineering Daily 27



SED 9 Transcript

[1:03:04.1] KB: Absolutely.

[END OF INTERVIEW]

[1:03:14.5] JM: As a programmer, you think in objects. With MongoDB, so does your database. 

MongoDB is the most popular document-based database built for modern application 
developers in the cloud era.

Millions of developers use MongoDB to power the world's most innovative products and 

services, from cryptocurrency to online gaming, IoT and more. Try out MongoDB today with 
Atlas, the global cloud database service that runs on AWS, Azure and Google Cloud. Configure, 

deploy and connect to your database in just a few minutes.

Check it out at MongoDB.com/Atlas. That's MongoDB.com/Atlas. Thank you to MongoDB for 
being a sponsor of Software Engineering Daily.

[END]

© 2020 Software Engineering Daily 28


