
SED 904 Transcript

EPISODE 904

[INTRODUCTION]

[00:00:00] JM: Open source plays a key role in today's world of technology businesses. Today,

the impact of open source seems obvious. From Kubernetes, to distributed databases, to cloud
providers. So much of our software is powered by open source, but it was not always this way.

Bruce Perens was one of the earliest figures in the world of open source. He collaborated with

Eric S. Raymond, the author of Cathedral and The Bazaar, and he also developed a different
belief set from Richard Stallman, who was another foundational advocate of open source. Bruce

Perens worked as an engineer at Pixar from 1987 to the year 2000. Bruce joins the show to give
a history of open source and talk about his experience in the software industry, as well as

modern policies around open source.

Thanks for listening, and I hope you enjoy the show.

[SPONSOR MESSAGE]

[00:01:02] JM: Cruise is a San Francisco based company building a fully electric, self-driving
car service. Building self-driving cars is complex involving problems up and down the stack,

from hardware to software, from navigation to computer vision. We are at the beginning of the
self-driving car industry and Cruise is a leading company in the space.

Join the team at Cruise by going to getcruise.com/careers. That’s G-E-T-C-R-U-I-S-E.com/

careers. Cruise is a place where you can build on your existing skills while developing new skills
and experiences that are pioneering the future of industry. There are opportunities for backend

engineers, frontend developers, machine learning programmers and many more positions. At
Cruise you will be surrounded by talented, driven engineers all while helping make cities safer

and cleaner. Apply to work at Cruise by going to getcruise.com/careers. That’s getcruise.com/
careers.

Thank you to Cruise for being a sponsor of Software Engineering Daily.

© 2019 Software Engineering Daily �1

SED 904 Transcript

[INTERVIEW]

[00:02:24] JM: Bruce Perens, welcome to Software Engineering Daily.

[00:02:27] BP: Well, thanks for having me.

[00:02:28] JM: I'm looking forward to talking to you about open source, but you have a very
interesting background. You were an engineer at Pixar from 1987 to 2000. Tell me about Pixar in

its earliest days.

[00:02:42] BP: So, I joined Pixar as employee number 63, and this was in 1987. I had, in 1981,
joined a place in the east called the NYIT Computer Graphics Lab, and that was a laboratory

that was the predecessor of Pixar. It was at a university that isn’t really well-known, and they
had a lab where students weren't allowed, and where they were essentially inventing future film

computer graphics.

All of the Pixar founders had worked there. They had actually just left to go to work for George
Lucas when I came in, and I eventually followed them to Pixar. But I started this as a disk

operator, and a disk operator made $2.15 per hour, and we had one VAX-780. It became too
later on. So, if you know what a MIPS is, those things ran at one MIPS, and your computer

today probably 2,000 per core, and it’s got more than one core. This was before the days when
we had automatic programs that made sure your disk was consistent. So we had to do that

manually.

If you’re a sys admin, you know something called FSCK. Well, we didn’t have that. And if
something broke in the file system, it took a reasonable amount of skill to fix it, and the file

systems were very fragile. So, you went through a process after every boot in single user mode,
and if it was really broken, it took a kernel programmer to fix the file system.

So, I worked there, and back then a frame buffer, which is the equivalent of an 8-bit graphics

card cost $70,000. And that was in 1981 dollars, and we used to wire three of them together to
make RGB. So, imagine what that thing cost. The very cheapest VGA card that you can get

© 2019 Software Engineering Daily �2

SED 904 Transcript

now, because we’re talking 640x480, is more powerful than the equipment that cost us 200

something thousand dollars at the time. You can imagine how slow it was to make graphics as
well.

Then I got to Pixar, and of course in 1987, the equipment was a little better. But there's actually

a constant in computer graphics, which is if it takes less than a minute to render the scene in a
single frame, we’re going to add stuff. So, as computers have gotten more powerful, and you

can see the difference if you go look at the original Toy Story and look at modern Pixar films or
other computer graphics films. We couldn't do hair very well.

In Toy Story, there are no human faces that you really get to see. No adult faces you see and

deal at all. The kid faces are obviously very abstracted, versus what you might see in computer
graphics today, where things look real, and we couldn't do real then. So, computer graphics has

improved quite a lot, mostly because of processors got more powerful, and we got the potential
to have more of them in parallel. There was no such thing as the cloud back when we started

doing this.

We did parallelize quite a bit, because we could render a frame separately, and of course at 24
frames per second in a film. So we had rooms full of processors that were each rendering a

frame at any one time. And I think for Toy Story, we had rooms full of Sun Microsystems, pizza
box workstations. They were actually meant to sit on the desk. They were a couple of inches

tall, and we just made big stacks of these things, and it was all a temporary set up. So we had
portable air conditioners in that room roaring away. Of course, we knew that by the end of the

film, the workstations would be worth nothing, that computers depreciated faster than fresh fruit.
So this was always a setup we meant to use for only one film.

It was a very exciting place to work, because we were making a field. This field of photorealistic

feature film, and somehow the Securities and Exchange Commission let us do our IPA just as
we were coming out with Toy Story. RIP initial offering. They let us do it. Yes, not beer. Initial

public offering, and they let us do it just as Toy Story was coming out. So, that was a lot more
publicity than I think an IPO would normally have. So, it was fun.

© 2019 Software Engineering Daily �3

SED 904 Transcript

[00:08:25] JM: Can I just ask, what was the interaction between engineers and the story

creators in the Pixar movie development process? I read Creativity Inc., that book about Pixar,
which was fantastic. But I'd love to hear it from an engineer that was deep in the process of

building some of these systems. What was your interaction with the animators and the
storytellers?

[00:08:50] BP: Well, the animators were pretty technical. Each animator on their workstation

had a large number of sliders. I think at that point, Buzz's face probably had 50 sliders to
change parameters in it. I walked around animation reasonable just to see what was going on.

During Toy Story, I went to all the rushes.

So, as the film developed, I was with the animators watching at least once a week as we played
newly animated stuff, and I knew quite a lot of them personally. Some of them I had worked with

in the lab in New York before going to Pixar. And we all got along pretty well. There wasn't really
much of the divide, at least at that time, between the animators and the technical people.

Now, there was probably some resentment on the animator’s part, because the software really

stunk. I mean, we were doing this for the very first time, and this software had been developed
at Lucas Film since 1970. I remember at the time, a technical director had to know 19 computer

languages, because we just kept doing different things through history. We’d invented our own
languages. We’d used a lot of interpreted ones.

So, I think when you think of computer animation, you may be thinking of programmers and

animators, and there's also a technical director. So, a technical director is a programmer who
knows enough to do coding that actually is some handle on the creative part as well. I did trying

to be a technical director, but I saw how bad the software was and decided to keep working on
its development.

[00:11:01] JM: So, was there a release process? When I think about the creation of a movie

that has a deeply technical engineering bent to its end-to-end process. I'm just trying to think
through. It's not like a continuous delivery process would exist in software today. What was the

creation and release process? I guess it must've been more waterfall-ish.

© 2019 Software Engineering Daily �4

SED 904 Transcript

[00:11:29] BP: Yeah, it was pretty waterfall-ish, and I don't think that they did a freeze for a film.

I think that they were constantly fixing bugs all through the film, because the animators would
come up with stuff.

I actually – Not directly my fault. It was a piece of software that I wrote that someone else

copied into the animation system. But I hadn't written it for the animation system at all. I broke
the rendering system for a good couple of months while people looked for a file descriptor leak,

which was really hard to find at the time. So, that was the largest time that I ran into – Well,
we’re trying to get new software out with all these features, and it just breaks totally

unpredictably. Tom Doeppner, who is a pretty famous systems programmer, finally found the
problem.

[00:12:31] JM: Did you ever interact with Steve Jobs in the process of your time at Pixar?

[00:12:37] BP: Well, I interacted with Steve Jobs all of the time. And Steve was there on my first

day at Pixar. I got to meet him and talk with them reasonably soon. He would come around to
look at what we were doing on the programming, and we were making new software. So Steve

would always come around for demos and things.

Steve always had an open door on his office, and I would walk in and talk with Steve. And I just
didn't really feel anything unusual about that. But I think some people might've been a little

intimidated by Steve and might not have done that. I was very young and probably somewhat of
an aggressive ass kind of guy. So, I just had no problem talking with Steve, and also pushing

back on Steve. I seem to do a lot of the pushing back on Steve in the role of talking about staff
issues.

I remember the last time I spoke with Steve Jobs was I was leaving Pixar. I was going to work

on Linux and open source. And I walked into Steve's office and said, “You still don't believe this
open source stuff.” And Steve said, “Well, you know. I had a lot to do with making two of the

world's three great operating systems.” By that, Steve meant Next OS, because he at the time
had the Next workstation company, and Mac OS. He considered the third one was Windows.

Unix wasn’t even in there. He said, “And we needed a billion-dollar research lab every time.” So
I don't think you're going to be able to do it.”

© 2019 Software Engineering Daily �5

SED 904 Transcript

So that was where we left it, and I shook Steve's hand and said bye. Never spoke with Steve
again. Steve wasn’t a really one to speak with ex-employees. Emailed him once or twice. So I

don't know if he got it. Just about PR issues. Because people would interview me and they'd ask
about Pixar.

So, Steve, I think it was really only a year or two after we had that conversation. Apple decided

to put open source software, the KDE browsers render in the Safari Web Browser. Steve got up
on stage at MacWorld in front of a slide that said, “Open source, we love it.” So I won that

argument, but of course Steve being Steve never admitted it to me.

[SPONSOR MESSAGE]

[00:15:44] JM: When you start a business, you don’t have much revenue. There isn’t much
accounting to manage, but as your business grows, your number of customers grows. It

becomes harder to track your numbers. If you don’t know your numbers, you don’t know your
business.

NetSuite is a cloud business system that saves you time and gets you organized. As your

business grows, you need to start doing invoicing, and accounting, and customer relationship
management. NetSuite is a complete business management software platform that handles

sales, financing, and accounting, and orders, and HR. NetSuite gives you visibility into your
business, helping you to control and grow your business.

NetSuite is offering a free guide, 7-Key Strategies to Grow Your Profits at netsuite.com/sedaily.

That’s netsuite.com/sedaily. You can get a free guide on the 7-Key Strategies to Grow Your
Profits. As your business grows, it can feel overwhelming. I know this from this experience. You

have too many systems to manage. You’ve got spreadsheets, and accounting documents, and
invoices, and many other things. That’s why NetSuite brings these different business systems

together. To learn how to get organized and get your free guide to 7-key strategies to grow your
profits, go to netsuite.com/sedaily. That’s NetSuite, N-E-T-S-U-I-T-E.com/sedaily.

[INTERVIEW CONTINUED]

© 2019 Software Engineering Daily �6

SED 904 Transcript

[00:17:33] JM: I think as a jumping off point into open source. I guess I'll just ask, when did you
get heavily involved in the world of open source?

[00:17:46] BP: Well, I did my first piece of open source software at Pixar, and it was probably

pretty close to 1987. So, gee! I've been in this more than 30 years, haven’t I? So, I made
Electric Fence, and I don't know how much of the audience are that old. But it used to be that

finding memory buffer overruns was just almost impossible.

So, the C Language has these buffer overruns, and if you code them, your code just fails totally
unpredictably in different places every time, because it doesn't run the same way every time.

And it wasn't got the same memory allocation every time. This would just drive programmers
crazy. I created a program called Electric Fence, and what this would do is it would make every

allocation to pages, at least, and the first page was your actual allocated memory. And the
second page was a dead page.

So if you touched that page, your program would immediately core dump, or if you weren’t a

debugger, it would stop. So the side effect of this was that your buffer overruns immediately
signaled themselves when they happened, rather than signaling themselves with their effects,

which was that you’d have garbage memory. You're in there making your program do
unpredictable things. So, that worked. I give it to everyone at Pixar and I said, “Well, this is

great. Let's put this out on the net.”

Of course, we had to use net back then. Pixar wasn’t actually on the ARPANET. So, I put this
out I think on comp.sources.sun on the Usenet, and I got my first introduction to the effect of

open source. Although this didn’t at the time of course have an open source license. I sent it out
and someone picked it up, said, “This is great. I need to put this where I work.” But I haven't

written very good documentation.

Person unknown to me until that point on the net wrote the documentation, and it was in my
mailbox the following morning. So, there was this effect of having a crowd work on software. Of

course, I put the documentation in the Electric Fence package. I gave it to everyone at Pixar
and started sending out new versions of Electric Fence with that documentation.

© 2019 Software Engineering Daily �7

SED 904 Transcript

So that introduced me to the effect of open source. And I think I sort of got pushed toward open
source by stuff that was going on at Pixar. At the time, I think everyone felt that Microsoft

Windows would be winning the operating system wars. And one day, Steve made his peace with
Bill, and I looked – At that time, I had an office directly across from Steve's. I could see into

Steve's office from my desk, and this was not because I was important. I think it was because
he wanted to keep an eye on me.

So, I looked on Steve's desk one day, and the next workstation had been replaced with a

Microsoft Windows laptop, I think. So Steve had obviously made his decision. It going to be
Windows future, and he told us that we would eventually put the Pixar animation system on

Windows. We weren’t really happy about that. Certainly, I wasn’t. I think a lot of the other
programmers felt it wasn't realistic that Windows at the time was more difficult OS to program

than Unix. Specifically, I think Sun and SGI UNIX especially for graphics. Graphics cards were
in their infancy. And I think for personal reasons, I just felt that Unix was going to be the way to

go.

And I started working on Linux, and Linux at this point had put out version 0.9 with some large
number of nine's after it. It was just adding another nine instead of going to 1.0 for very long

time. At that time, it might not of have had networking. And Allan was adding the networking. I
was sort of helping out that a little, although I didn't have a really big role in the kernel at all.

I did things, like got someone else to release his networking software that help the kernel

developers. But Linux really making it. I thought a lot more people were getting interested in it. I
got interested in the GPL. I thought it really worked well and it incented people to contribute

software. It had this incredible multiplier effect where the software would just get bigger and
bigger.

So, eventually we had a moment that was sort of when I determined to leave Pixar, and at one

point long before Toy Story, Pixar had lost $40 million, and Steve had the choice to fold it up, fire
us all, or put more money. Steve wrote off all of what he had put more money in, to that point,

wrote off his entire $40 million investment in Pixar. Reorganize the company essentially and put
in more money.

© 2019 Software Engineering Daily �8

SED 904 Transcript

And at that time, I had been at Pixar for eight years, and all of my employee stock vesting was
reset to zero. I think on the second time, I got less stock too. So I found this very frustrating. You

work it at a company eight years. You think you're going to make some stock. Okay. Now, let’s
start all over again. So I would be at Pixar for 12 years before my stock vested.

During that time, Pixar turned around. We got our movies going. We have had previously on

non-compete with Lucas Films. So we had to make hardware and things. We could make films.
But the non-compete eventually ran out and we made our deal with Disney. And I decided on

year 8 that I had worked until the stock vested, and then I would leave.

So as the end of stock vesting was coming up, I did inform my managers that I was leaving and
I would do it on this particular date. And they said, “Okay. Well, thanks for telling us, and we

agree with your plan,” which was nice. I mean, they could've fired me that day. I still would've
had most of my stock.

I did leave on the day that I got the last share. And some point in there, actually a number of

separate times, sold off stock and paid off the mortgage on my home. So, I now could be a
flake, because I didn't have this tremendous debt on top of me. So I could work on open source

in reasonable confidence that my family would not be out of their house and starving.

I eventually went on to form Linux Capital Group, and we invested in a couple companies that
didn't work out. Progeny Linux Systems, Ian Murdock was head, and another short-lived

business that was going to do cryptography. But the market turned and I had picked the wrong
partners and I eventually rolled up that business and went to Hewlett-Packard to be a manager.

[00:26:53] JM: Okay. Just to take a step back though. What I’m interested in talking about is

your beliefs around open source. So, you have a certain set of beliefs, and you were interacting
with Richard Stallman, and Eric S. Raymond, and these people who are now parts of the open

source historic galore. I’d had love to know how your beliefs around open source contrast with
those of Richard Stallman, Eric Raymond and the other people who were early names in the

open source world.

© 2019 Software Engineering Daily �9

SED 904 Transcript

[00:27:31] BP: Okay. Well, I corresponded with Richard in the early 80s, where we’re talking

’81, ’82, because I had followed the original announcement of the new – I once heard that
Richard was working with Intel and wrote to him and said, “Why are you the free software guy

working for Intel? They make proprietary software?” and Richard wrote me back and said, “Intel
is paying me to work on free software.” At that time, they were making the GNU Compiler work

better on the Intel CPU.

A lot of the early people involved in Debian and open source were also radio hams, like Bdale
Garbee, for example. Phil Karn. A lot of people who are still known in communications software

today, and I was corresponding with them on ham radio technology issues. So I knew a lot of
these people.

Where my beliefs sort of gel was that I believed in free software. I felt the free software was a

great thing to do that it helped tremendous numbers of people, that for a programmer, it was
actually more gratifying for me than working at Pixar. Because all of the software I did at Pixar

would be end-of-life by the end of a film, if not before that everything. I did for Pixar has been
end-of-life, and everything I've done an open source still has users. And as it happened, I mean,

millions or even billions of users, because, for example, Busybox is in so many telephones and
wireless access points. It's just all over the place.

So, I like the idea of free software, but I didn’t want to rule out making proprietary software. For

example, at home, I used Quicken, I thought that Quicken was a really good example of where
proprietary software works, that they were making money for it. That they had many paid

maintainers.

TurboTax is another example from the same company. The developers of TurboTax, they're not
programmers, they’re accountants. So those were places where I thought proprietary software

worked very well. I developed this understanding that open source works very best for
infrastructure kinds of software to a great extent, and that companies can afford to work on open

source wherever it's not business differentiating. So, what does that mean?

Say, you’re Amazon. Amazon at one point had a notification system that said people who
bought this book also bought these three books. And half the time, the person would order one

© 2019 Software Engineering Daily �10

SED 904 Transcript

of those three that it recommended, and all of the expense for Amazon was putting the first book

in the box. Profit was significantly larger when they put a second book in the same box and
shifted to the customer.

Now, when that recommendation came out, it was the first system of its kind. It was a business

differentiator. The other bookstores, this is when Amazon was still a bookstore, did not have a
similar system in their online system. That was business differentiating for Amazon. The

customers saw it. It made Amazon's business visibly better than the other businesses.

In contrast, Amazon could have told all of their competitors everything they knew about Apache
and PHP, and it would've help them all work more efficiently, because Amazon could have

distributed the cost and risk of developing Apache and PHP among other companies. But what
made them important to their customers was all these business differentiating things. Not the

infrastructure.

So, I got to see open source as having a role in what for many companies was actually a duality,
where maybe 95% of the software that they did was supporting in nature that they could share

the development as open source and it would actually reduce their software development costs.
And then they could take that money and put it on the 5% of software that actually was business

differentiating. And that made them look different to their customers. It made their business work
better, and that they could not open source until it lost its differentiating value.

So having developed this whole philosophy of how open source works in business, and I wrote

this up in a paper called The Emerging Economic Paradigm of Open Source. I realized I was in
a fundamentally different place than Richard, because Richard wanted the world to be all free

software. You know what? That would be a very nice world. Let's not kid ourselves.

I was talking about how software works in business where there was a role for open source and
there was a role for proprietary. Now, Eric, I think Eric also understands that there is a role for

open source and proprietary, but I've never really been able to pin down Eric on what his
philosophy is. And if you read the Eric, he goes into a lot of issues that aren't related to open

source at all, and I'm actually kind of careful about that with evangelizing open source.

© 2019 Software Engineering Daily �11

SED 904 Transcript

For example, you won't find out how I feel about Trump during this podcast or how I feel about

abortion or anything like that, because if we talked about those things, you might tune me out
based on my feelings about those and never for listen to my message about open source. And I

wanted people to hear my message about open source. Eric doesn't restrict himself that way.
Eric talks about whatever Eric wants to talk about, and I think it makes him a worse evangelist.

[SPONSOR MESSAGE]

[00:35:17] JM: Every software engineer writes integration, whether we’re integrating Stripe, or

Slack, or Google, or Facebook, we write code to leverage the APIs and tools of the software
world. As an application gets bigger, more and more of these services exist in your app. You

have Twilio, and HubSpot, and Zendesk and Salesforce. You begin to want integrations
between these different services, and the amount of integration code you have to write grows

and grows.

Zapier can simplify the integration process between your apps and services. Zapier is an online
automation tool for connecting two or more apps. For example, I can use Zapier to integrate

stripe with Google Sheets, and every time a user signs up and pays for a subscription with the
Software Engineering Daily mobile apps, their Stripe email address can be put into a

spreadsheet and Zapier can make that Google Sheet easily import those email addresses into
our MailChimp newsletter, Software Weekly.

Then Zapier can make sure that every reply to the MailChimp newsletter sends a message to

our Slack, and if that newsletter subscriber is also in our Slack channel, we could send them a
message and start a more real-time conversation with them.

If you're looking for a single service that centralizes all these integrations into simple workflows

called Zaps, Zapier is the easiest way to automate your work. Find out how Zapier can help your
software integrations by going to zapier.com/sedaily to try Zapier for 14 days. That's Z-A-P-I-E-

R.com/sedaily. There's probably a way that Zapier could make your software run more smoothly,
and if you are just a technical person, you probably have enough spreadsheets, and Gmail

accounts, and social media management that Zapier could save you some time personally even

© 2019 Software Engineering Daily �12

SED 904 Transcript

if you don't have a business. So check out zapier.com/sedaily right now through November and

learn how your API integrations could be managed more easily. Try Zapier for free.

Thank you to Zapier for being a sponsor of Software Engineering Daily.

[INTERVIEW CONTINUED]

[00:37:46] JM: Today, we've reached a time where open source has a tremendous impact on
the software industry, and there is a strong interplay between corporations and the open source

community. That was not always the case. Can you just give me your perspective for how and
why the relationship between large corporations and open source has evolved to the state that

it's in today? I guess maybe in that answer you can give some background about your
experience with Microsoft and HP and your story with open source there, because your history

and the history of Microsoft's perspective on open source has some interesting overlap, you
might say.

[00:38:38] BP: Yes, and the ending is especially interesting, because in the end, the pigs fly.

But, anyway. Well, at the start, no one would listen to us, and that's really important to know,
because if you look at the open source definition – Now, I did a really good job and it stood for

22 years now. But I had no lawyers helping me. No lawyer would help us. We didn’t not have
money to pay if we wanted, and none were volunteering. Of course, if I had the help of a lawyer,

I might've done a few things differently.

So, there should be in this tremendous development where we started out sort of being
anathema, a bunch of weird, maybe pinko kind of guy who eventually the world just accepted

us, and the speed with which that happened is still astonishing.

At companies, open source was a bottom-up revolution. So, what that means is that
management obviously was not starting open source initiatives. Management would've been

horrified to understand that their programmers were working with open source. The law
department wasn’t aware of this, and when they did, they often had a great deal of learning and

adaptation to do.

© 2019 Software Engineering Daily �13

SED 904 Transcript

But what would happen would be an engineer would start to work on something and say, “Well,

gee! We don't need to develop something. We can just take the open source software and use
it,” and that person might not have had much concept of licenses, but they realized the software

was in some way usable.

So we saw things like Apache get into businesses, because at the time, everyone had to be on
the web. That was an imperative. And how do you get on the web? How do you make your

website work? Well, open source tools were a really good and easy way to do that, and the web
was a good fit for open source. It was all systems programming. The interpretive languages that

people use to develop websites, they were a good fit. Again, they were systems programming.
They were infrastructure. They were the kinds of things that open source, especially in the early

days, really did best.

So, companies did start pick it up. At the time, also, Microsoft software wasn’t that good. I mean,
everyone would tell jokes about the blue screen of death, because the software would crash all

the time. It did not have the memory protection that we wouldn’t [inaudible 00:41:52] to today,
and they didn't have much competition. I mean, Apple was in a very different market. Was not a

direct competitor to Microsoft, and had its own problems in any case.

So, I think the best thing that ever happened to Microsoft Windows was the Linux system,
because Microsoft suddenly had a competitor and had to be good, and quality obviously

increased, because Linux, from very early days, did the whole Unix paradigm where it ran
protected memory. Your process was protected. It could ruin another process’s memory. We

understood good things about how to keep systems from crashing from Unix since the 1970s,
and all of that went into Linux immediately.

Whereas Windows, they kind of copied the VAX PMS API if I’m not mistaken, but they didn't

really get the memory protection right for a long, long time. And part of that also was the
hardware they had to run on. Obviously, CPUs improved as time went on and got protection that

I think might not have been in ’80, ’86.

So, we had a system that was very desirable to industry. There was also the BSD system, but
the BSD system lagged behind technically at that time. The BSD researchers were using a kind

© 2019 Software Engineering Daily �14

SED 904 Transcript

of disk that was much more expensive than the kind that computer amateurs and individuals

could get their hands upon. So, BSD didn't really work as well as Linux for a lot of people,
because it didn’t work on their hardware until later on.

Actually, I think the license had some effect too. I think the GPL was instrumental to the growth

of Linux at a time when people were less willing to contribute software, and the BSD license did
not mandate that they contribute that software. So, I think that BSD expanded more slowly,

because of that.

Now, at the time, the world of software had become very intellectual property-oriented. Mostly
copyright. And you really can trace that back to Bill Gates being upset about, “Well, I made this

Microsoft program and everyone pirated it instead of paying for it.” So the paradigm, if it hadn’t
started before. And I think if you were a big computer customer, it might not have started before,

because you paid for the hardware and software was always free, because it wouldn't run on
anything else and there wasn't really a reason to protect the software that competitors had

different instructions sets. They had different hardware connected to the CPU.

So, everyone at the time was very impressed with the growth of Microsoft as a business, where
obviously it started with two guys and it dominated the software industry. We had before then

the whole world of media ,where copyright is obviously been important since Victor Hugo wrote
Les Miserables.

So, we were going against this whole intellectual property paradigm. We weren't throwing it out

completely, but we were using it to do the opposite. That's why it's copyleft instead of copyright.
We used copyright to make people share, instead to make people not copy.

Oh, gosh! I remember the famous Linux is a cancer that beats all your intellectual property, and

that was so great for us. I mean, there's Craig Mundie. He’s the vice president of Microsoft, and
he is obviously driven totally insane by what we’re doing. People looked at Microsoft and said,

“Hey, look! These guys are really scared. Let's look at this Linus stuff.”

So I think that Microsoft, for years, was just the perfect foil, because everyone loves the fight,
and the press loves the fight. They write about it, and I could get in fights with Microsoft and be

© 2019 Software Engineering Daily �15

SED 904 Transcript

covered by all of the online press, and Microsoft would say something and reporters would call

me up. So we didn't spend a dime on public relations. We had a PR person who sort of
volunteered. She’s still with me today. She actually made a ton of money, because I've sent her

a lot of businesses as time has gone on and more companies got interested in open source. But
she was a volunteer.

So, it was just very entertaining and exciting how the world was sort of beating right to our door,

beating a trail to our door, and it was very interesting how business took it up, because they
looked at, “Oh, gee! We could pay millions and millions of dollars for Microsoft desktop licenses,

or we could just get free software,” and the free software was attractive and it was more
attractive, because for the most part, it didn't break. And it was also more attractive because

programmers hate isolating bugs and then talking to the vendor about fixing them, because it
always puts the programmer in an pleading relationship.

Like here I've got a bug. First, I’ve got to convince the company that it is a bug. So I've got to

convince the company to listen to me about the bug, and I've got to convince the company to fix
the Bog. And then I've got wait for the company to fix the bug, and it could be years, and this

was very frustrating to a programmer, and most programmers would've liked to have the source
code and just fix the bug. So, they got it, and they started doing it and it worked, and this was

just this – Obviously, Richard Stallman talks about freedom, but this was freedom in another
way, because suddenly I didn't have to plead with a company, and I could get my work done.

Yeah, that is the freedom that Richard's talking about.

So, I think it just worked incredibly in companies, and were at the point today where business is
just built on open source software. I sit back and wonder, “Well, when is this going to change?”

and I don't see it happening. Will open source die someday? Movements eventually die. Will
there be a resurgence of intellectual property? Will software businesses figure out how to be so

good that proprietary software replaces open source? Well, they’re not doing it.

So this is very fun and it's just fun sitting here, at least 22 years after I've started things, and
sometimes even longer, and just seeing all of these threads that I worked on a very long time

ago come together. And the world was doing what I told the world to do all that time ago and
never thought I'd really be quite so successful. So, it’s very entertaining to watch it happen.

© 2019 Software Engineering Daily �16

SED 904 Transcript

[00:50:22] JM: Okay. Well, final question. I just like to get your perspective on some of the
licensing changes that have occurred in some of the open source business. So, the changes to

the MongoDB licenses, the Elastic license. Do these things matter? What do they symbolize in
the history of open source?

[00:51:32] BP: Well, this is a blast from the past, and I say that sarcastically, because before we

had open sores, we had educational use only software. We had Shareware. We had software
with very limited in controlling licenses. To use entertainment term, none of these stuff had legs.

It didn't get very popular. It didn't build big communities. It didn't have the sharing and getting
fixed by many people paradigm that we have now.

So, we have a number of licenses, which we’d like to be open source with less freedom. And I

think there are a lot of people who kind of don't get that when you start taking out the freedom, it
doesn't work anymore. So, I looked at all of these open source with less freedom licenses, and

I’m mostly just board. And the only part of it I really reject and will keep rejecting is not that
people are making these bad licenses. You can make any license you want, but that they would

like to call of a license open source when it really is. And there are lots of people who are
saying, “Well, things have changed and the open source initiative should relax the rules and let

us have these licenses with less freedom that are called open source.”

There's one particular VC who’s particularly obnoxious about it by it. I've actually invited him to
this commercial open source conference that we’re having. So, I'll probably get to discuss it with

him a bit, but we’re not going to do that. We’re not going to change – Fundamentally change the
rules of open source, and thus people have started to make other campaigns.

So, Heather Meeker, the attorney, she’ my attorney. She's very good. Another attorney have

something called polyforms, and polyforms is a home for licenses that are not open source.
Maybe they’re as close to open source as they feel they can get. I don’t really see it taking off. I

helped them out a bit, because they’re friends and I didn't want them to get things wrong. And
most of all, I didn’t want them to call it open source.

© 2019 Software Engineering Daily �17

SED 904 Transcript

So, they're not calling it open source, and I'm fine, but it's boring. And open source is more

exciting, because all of these wonderful things that happen about it, which licenses with less
freedom don't get, all of their synergies. So, my message to the people who would like to use

these various licenses, many who are making software used by software as a service
companies. Please use any license you like. If it doesn't comply with the open source definition,

please don't call it open source, and we’ll get along.

[00:55:11] JM: Bruce Perens, thanks for coming on Software Engineering Daily. It’s been really
fun talking to you.

[00:55:15] BP: It's been great to talk with you. Thanks very much.

[END OF INTERVIEW]

[00:55:27] JM: Software Engineering Daily reaches 30,000 engineers every week day, and

250,000 engineers every month. If you'd like to sponsor Software Engineering Daily, send us an
email, sponsor@softwareengineeringdaily.com. Reaching developers and technical audiences

is not easy, and we've spent the last four years developing a trusted relationship with our
audience. We don't accept every advertiser, because we work closely with our advertisers and

we make sure that the product is something that can be useful to our listeners. Developers are
always looking to save time and money, and developers are happy to purchase products that

fulfill this goal.

You can send us an email at sponsor@softwareengineering.com even if you're just curious
about sponsorships. You can feel free to send us an email with a variety of sponsorship

packages and options.

Thanks for listening.

[END]

© 2019 Software Engineering Daily �18

