
SED 853 Transcript

EPISODE 853

[INTRODUCTION]

[0:00:00.3] JM: Kubernetes has made distributed systems easier to deploy and manage. As 

Kubernetes has become reliable, engineers have started to look for higher level abstractions 
that we can define on top of Kubernetes. An operator is a method of packaging, deploying and 

managing a Kubernetes application. Operators are useful for spinning up distributed systems, 
such as Kafka, Redis or MongoDB. These data systems are complicated. They’re stateful 

applications with lots of failure domains. The operator framework enables a developer to deploy 
one of these complicated applications with less fear of the system crashing, or entering an 

erroneous state.

Rob Szumski is an engineer at Red Hat and he joins the show to discuss Kubernetes and the 
operator pattern and his time at CoreOS, which was acquired by Red Hat.

I'll be attending a few conferences in the near future. I'm attending Datadog Dash July 16th and 

17th in New York City, and the Open Core Summit September 19th and 20th in San Francisco. 
Also, we are accepting sponsorship proposals if companies are interested in sponsoring 

Software Engineering Daily and reaching our audience of 200,000 plus developers. We actually 
don't have great numbers on how many listeners there are, but we know it's a lot. If you're 

interested, you can e-mail me at jeff@softwareengineeringdaily.com and we can discuss 
sponsorship.

Let's get on to today's show.

[SPONSOR MESSAGE]

[0:01:45.5] JM: This episode of Software Engineering Daily is sponsored by Datadog. Datadog 

integrates seamlessly with more than 200 technologies, including Kubernetes and Docker, so 
you can monitor your entire container cluster in one place.

© 2019 Software Engineering Daily �1



SED 853 Transcript

Datadog’s new live container view provides insights into your container’s health, resource 

consumption and deployment in real-time. Filter to a specific Docker image, or drill down by 
Kubernetes service to get fine-grained visibility into your container infrastructure. Start 

monitoring your container workload today with a 14-day free trial and Datadog will send you a 
free t-shirt.

Go to softwareengineeringdaily.com/datadog to try it out. That's softwareengineeringdaily.com/

datadog to try it out and get a free t-shirt. Thank you, Datadog.

[INTERVIEW]

[0:02:42.2] JM: Rob Szumski, welcome to Software Engineering Daily.

[0:02:44.5] RS: Hey, nice to be here.

[0:02:46.1] JM: You were at CoreOS for four and a half years before the company joined Red 
Hat. When you joined CoreOS in 2013 long before the acquisition, what was the infrastructure 

landscape like?

[0:02:59.7] RS: It was interesting, because – so we set out to reinvent the way that Linux was 
run. This is before containers, so VMs were a really big thing. People building pet VMs. There 

wasn't a lot of large-scale infrastructure to support running a thousand VMs. Folks like 
Facebook and others were doing this.

Yeah. I mean, you had cloud APIs and things like that. Folks, even Terraform I don't even think 

was around then or was very new. There wasn't a lot of this infrastructure, so we were part of 
the wave building that. Containers were a part of that. Re-architecting Linux was part of that as 

well.

[0:03:29.9] JM: What problems was CoreOS seeking to solve?

[0:03:32.8] RS: It was running large-scale Linux infrastructure. Our founders – I also came from 
Rackspace, where they were running technically a very large distributed system running web 

© 2019 Software Engineering Daily �2



SED 853 Transcript

scale monitoring. They realized that managing all their Linux servers – I mean, this was a cloud 

company, keep in mind. The right tooling wasn't there the Linux side of it. We had some of these 
APIs to programmatically boot VMs and things like that, but we didn't have the capabilities to 

know what is the state of all my thousand servers that might be across seven different GOs. Are 
they patched? What kernel versions am I running? How do I manage this fleet?

We had tools like chef and puppet, but those were more convergent style technologies. Am I 

orphanage off snowflakes here and there that are now no longer tracked in my system? That 
was the landscape that you found yourself in. We are trying to solve that of how do you run 

Linux at very high-scale?

We backed into containers and Kubernetes and distributed systems through that lens of I've got 
a thousand of these things, how do I keep them upgraded? Okay, well that we got to re-architect 

Linux to do over-the-air style upgrades, is really the only way to do it at scale. What do I need? 
Well, I need a way to move these applications from machine-to-machine, so we can take them 

down and reboot them to update them.

Okay, well containers provide a great encapsulation of an app and its dependency, so I can 
move those around. Now I need some logic for where do I move them to, which one of these 

thousand machines. We backed into Kubernetes and other orchestrators like that.

[0:04:58.3] JM: That's a good description of how the technology changes were evolving at the 
time. Can you go a little bit deeper on how the strategy within CoreOS changed, like the 

business strategy?

[0:05:13.8] RS: What's interesting is the business strategy really didn't change throughout the 
entire company run, as well as the technology strategy at a very high level, which was to sell to 

companies that had this problem. The beauty of it was the market was growing and growing and 
growing, because almost every company had this problem. Everyone's running web services, 

everyone in your industry is running web services getting smarter with machine learning, moving 
things to the web.

© 2019 Software Engineering Daily �3



SED 853 Transcript

If you weren't doing it, you were about to get disrupted. You see this in everything from 

transportation and things like Uber and Lyft to real estate, to e-commerce, to same-day delivery 
and things like that. All these things need APIs, they have machine learning behind them, they 

have all this stuff needs to run somewhere. We were catering to those types of organizations. 
Now that's every bank, every insurance company, every government agency, etc.

[0:06:03.3] JM: Why did Kubernetes win the container orchestration wars?

[0:06:06.6] RS: I think for two things; one, I mean, Google's stewardship in the beginning was 
really, really powerful. They had the technical chops to make people sit down and pay attention 

to it. They also ran the project really well. I mean, I don't know if this comes from any of the 
ways that they organize internally, or just they just hit on a nice open source way to do this, 

which was there's these special interest groups that look after every part of Kubernetes and 
they're driven by design documents and they have sign offs and they have community meetings. 

It's a very well-run thing. Even if a lot of those people in the beginning were Googlers, or we 
were taking off concepts that were tried and vetted at Google, but then now it's taken off into its 

own thing using that same process.

Other ecosystems were very top-down driven by either a single commercial organization. I don't 
know as much about the history of Cloud Foundry. I think they tried to do some of this as well. I 

don't know much about why, if we consider that failed or not.

[0:07:05.6] JM: Yeah. I mean, in the Cloud Foundry case, I don't know that story much either, 
but what Kubernetes did right, one thing they did right at least was that the whole donation to 

the CNCF thing, which didn't entirely subtract Google from having influence over the project, but 
at least was a nice signal. It's in a signal to the community. This thing is fully donated.

For people who don't know much about open source, like what open source means, there's a 

big difference between Tensorflow, which is open source. As far as I know, that repository is 
maintained and owned by Google, versus Kubernetes, which Google donated to the Linux 

Foundation. It has this democratized element to it. When you hit when you have this really big 
tent, like Linux Foundation oversight, it goes a long way to building trust in the community, as 

opposed to the Cloud Foundry model, where I think it's more – it still is more in the purview of 

© 2019 Software Engineering Daily �4



SED 853 Transcript

Pivotal, which has its pros and cons. What lessons did the container orchestration wars teach 

you about technology adoption?

[0:08:16.2] RS: I used to play in the OpenStack realm as well at Rackspace.

[0:08:19.5] JM: Oh, wow. That's another historical analog.

[0:08:23.7] RS: Yeah. I was at Rackspace prior to the birth of OpenStack and saw that get 
birthed there. Rackspace is one of the original two with NASA in releasing that open source 

code. What I look at when you look at the adoption and the lifecycle of an OpenStack, the 
community and ecosystem versus Kubernetes and containers, it was the right abstraction level 

for the end-users, which was the software engineers that are actually building all the web scale 
services that we just talked about.

If you look at getting a raw VM, or getting a load balancer is great in the OpenStack world, but 

it's not the right level of abstraction for what you're trying to do. That doesn't help you ship your 
predictive type-ahead search that you need to put in your mobile app, or it doesn't help you 

predict transaction volumes or something like that. It's just a means to an end. Kubernetes 
actually gives you those primitives.

I need to scale out this web service really, really quickly. You're not dealing with booting 

machines and wiring things up. You've got service discovery at your disposal. If you need to 
rotate a secret for example, there's no tooling for doing that in OpenStack or with a VM. You're 

inventing all that yourself. Versus now, you're a little bit closer down to your application where 
you have tools for doing secret management, for example.

It makes developers more productive, but also has a bunch of great benefits for your 

infrastructure teams. Whereas OpenStack or anything that is not going to get all the way down 
to that core end-user is not going to be as successful. Does that make sense?

[0:09:46.4] JM: Yeah, interesting. How would you calcify that into a more abstract lesson?

© 2019 Software Engineering Daily �5



SED 853 Transcript

[0:09:53.6] RS: More abstractly – I guess, it's all about delivering value to the folks that not are 

– I'll use the decision-makers in air quotes, because it's not the folks with the dollars, but the 
folks that are making technology decisions. Is it making their lives easier?

[0:10:08.7] JM: Why didn't OpenStack do that?

[0:10:11.3] RS: Because, I don't think it was the right set of tools for the software engineers and 

the teams that were running infrastructure on those VMs. They still had to build all this tooling. It 
got them one step down the road, but they needed to be four steps down the road thing.

[0:10:24.5] JM: Who was OpenStack for?

[0:10:26.1] RS: Honestly, I think it was for folks trying to compete with Amazon and building 
large-scale infrastructure, but people that were building clouds. If you were one of these very 

large enterprises that was going to have a fleet of a bunch of bare metal servers that you were 
going to turn into your private cloud, OpenStack was for you, but it wasn't for your software 

engineers at the end of the day.

[0:10:46.1] JM: I see. What would happen is a central IT person would say, “This solves our 
problems.” Then they would say, “Okay, software engineers go implement my OpenStack 

strategy.” The software engineers would do it, but not fall in love with it to the same extent that 
people fall in love with Kubernetes.

[0:11:07.6] RS: Yeah. It would be something that they would be mandated or forced to use. It's 

better than opening a JIRA ticket to get a VM. It's better to hit an API, so you're one step closer. 
They don't give you all those primitives for like, “Okay, now I've got to deploy some software 

around here. How do I build that software? How do I package it into an artifact that ends up on 
this VM and then how do I do X, Y or Z about the lifecycle of that?” That’s like, “Well, you can 

make another VM via this API?” You're like, “Well, that's not what I need.”

[0:11:36.5] JM: Right, right, right. Unfortunately, the four-steps-ahead solution was AWS at the 
time, which was an open source. Then we had to just continue waiting to really get the open 

source version of the leverage that you get out of AWS.

© 2019 Software Engineering Daily �6



SED 853 Transcript

[0:11:54.6] RS: Yeah. Great point of that is, “Hey, I need a database.” That’s like, “Oh, sweet. 

Here's a VM. You can install a database on that.” You're like, “Well, that's not what I need.” 
That’s yeah, gets you one step forward, versus Amazon is like, “Oh, here is a AHA fully secured, 

production-ready MySQL. Is that what you want?” You’re like, “Yes, perfect.” “Here’s the host 
name and the password.”

[0:12:13.3] JM: Yes. Okay. The I need a database request is going to be a great – that's a great 

preface for what we're going to talk about with operators a little bit later. Getting a little bit more 
into how you think about building products for engineers. You studied industrial design in 

college. Much of your work has been around the design of technical products, products for 
software engineers. Give me the one to two-minute condensed master class of designing 

products for software engineers.

[0:12:47.3] RS: Sure. What I learned in my industrial design background is really this idea of 
design thinking. It's a way of solving problems and it's a pretty – it's methodical, but it doesn't 

have to be something that you have to enumerate every single step and do it perfectly every 
time. It's all about doing research and understanding the problems of the different classes of 

users that you're trying to meet the needs of. Then fitting a void of in that problem space and 
then growing out from there.

If you're going to produce a new electronic component or whatever, something like the iPod fit 

this niche that people had this void in their lives. Then you can design around that. The actual 
appearance of it is great and the functionality of it is great, but nowadays everything has a 

service component to it. When you're designing Spotify, it's not just like, “Oh, how does the 
player look? Oh, they've got this dark UI. That's cool.” It's actually like, “Oh, how do these 

magical discover playlists work? That's a service component to it.” The experience is constantly 
changing, and so it's that idea that we have this holistic experience when you're designing 

something, whether it's a web interface, an iPhone, a CLI, an API, all these things matter 
because they grow over time.

[0:13:57.9] JM: What's the most common anti-pattern you see among products designed for 

software engineers?

© 2019 Software Engineering Daily �7



SED 853 Transcript

[0:14:03.4] RS: I would say either breaking API contracts, or revving your version such that like, 

“Oh, semantically we increase the version, so we didn't break our contract, but introducing a lot 
of toil for folks where they have to mess with your product.” Basically, what you're asking for is 

to insert yourself into somebody's development loop in their product shipping. You want your 
tool to provide a ton of value for them. If you're also adding a ton of friction, “Oh, we changed 

this, we renamed this, we changed our pricing scheme. Oh, you now authenticate like this, or 
like, oh, we deprecated that. We have this new thing. It works a little bit differently, but it's 80% 

there.” Anything that you do those types of things, because it's easier for you as the engineer 
producing that tool, you're introducing all that friction to your customer.

I see that happen time and time again. Actually going back to the OpenStack thing, this is where 

Google does a great job in Kubernetes and we didn't in OpenStack is all those projects were 
versioned differently. They had different backwards and forwards compatibility guarantees. They 

upgraded, either didn't at all, or provided a crappy migration script, or some of them would have 
a world-class migration, but it was all different so you couldn't depend on it. That's something 

that Kubernetes does really well in terms of how you upgrade it. Every CLI out there as well, if 
you've ever had something that broker dropped flag silently is a really big problem.

[0:15:20.3] JM: The buying of software has changed. It's gone from the days of a CSO, or a 

CIO buying a big solution and ordaining that the software engineers implement it. I mean, that 
still takes place in many cases. There's clearly a shift towards a bottoms-up mentality, where the 

software engineers are the ones who are selecting the technologies and there's a gradual 
uptake within a company. Then eventually, the central IT says, “Okay, well all of our developers 

are buying into this. Pretty easy to just go negotiate a contract, because developers are going to 
use it.” How has that changed the design of software engineering tools?

[0:16:04.7] RS: I think it's raised the user experience bar, is the most overarching thing that 

you'll discover. From the docs about your product, even if it's API-driven, like the Stripe 
experience is always heralded as being really, really great. You now need to live up to that for 

the next thing. If you're going to introduce some video transcoding service, for example, it's got 
to be clear. What it gets me? How do I implement it? What is it going to look like in the future? 

Why am I betting on this? Then can I actually plug it into my thing, whatever workflow that I'm 
implementing? I think that bar is now really, really, really high, which is good. Everybody's lives 

© 2019 Software Engineering Daily �8



SED 853 Transcript

get easier, but that just means that these crappier products aren't going to make it just because 

they don't live up.

[0:16:48.6] JM: What are the problems in usability that Kubernetes users still have today?

[0:16:54.9] RS: I think it's a number of things that – it's a pretty broad platform at this point. 
Understanding all of the knobs that you have to tweak to tune your applications, or tune their 

eviction behavior, or anything that's about the lifecycle of your application, there's this – and 
functionality is constantly being added. Understanding all that and just keeping in mind what's 

coming, what's stable, what's in the beta, that type of thing.

Then shipping, containerizing your software is still a hurdle for a lot of folks. If you're on more 
the bleeding edge, that seems like, “Oh, we solved that three years ago.” Folks are still getting 

into how do I adapt my software for this new world? Folks are very used to just manually 
configuring a single server and leaving it running forever; that just doesn't fly in this system. It's 

breaking those cultural norms, I would say is still a big challenge.

[0:17:50.0] JM: We've done a couple shows on “stateful Kubernetes applications.” I think a 
stateful application, you can generally define as something you attach storage to, like container 

attached storage, maybe a persistent queue, like a Kafka, or a Redis. Tell me if you agree with 
me or not on the definition of a stateful application and give me your perspective on how hard is 

it to run stateful applications today.

[0:18:23.1] RS: Yeah, I think you started to describe – I'll just invent a term here, like lower level 
stateful applications, which is basically you're taking a either a pod in Kube land, or a VM 

somewhere else and just attaching a block storage device to it. Then it's like, “Oh, this is really 
good for a simple PostgreSQL database or something.” Or store your data there and that 

actually ends up on some remote block storage somewhere.

Then there I think there's higher-level stateful applications, which are what you started to 
describe as the messaging queues. These are replicated databases, things that might not 

depend on disk per se, but storing things in RAM and doing synchronization in some other 
mechanism have to app layer. Both of those –

© 2019 Software Engineering Daily �9



SED 853 Transcript

[0:19:05.0] JM: Right. Kafka does keep stuff in RAM, doesn't it? Like UX, okay.

[0:19:07.7] RS: Things like etcd for example, primarily store things in RAM. It gets flushed to 
disk on the right, so you have that durability. Mostly, what you're doing is holding it in memory, 

just things like Prometheus, or holding that stuff in memory as well.

[0:19:21.8] JM: Does etcd – it maintains three different copies in RAM for each piece of data, 
and then when a write is only completed if it's on three different copies in the RAM?

[0:19:33.6] RS: It’s write-ahead log. Three, five, seven, nine are the typical numbers that you'd 

run those in. It basically keeps all the data in RAM, but it flushes it to disk. That only when it 
flushes itself to disk, it comes back saying that that disk write actually happened. Is it then sent 

to all the other followers in the cluster saying, “Hey, this was committed.” This is so that if the 
process goes down, you're not losing your quorum, or when it comes back up, you can – the 

write-ahead log needs to stay intact.

This is one of the interesting things about etcd, is especially and this interacts with everybody 
because everyone's running Kube, is etcd is only as fast as the slowest core members. If you 

think about your path to – you have a network request going over into the etcd cluster over a 
network. It needs to be ingested by etcd, written to disk. That disk might actually be a remote 

block storage device, that write needs to come back and then be transmitted to all the other 
followers, once again, over that cloud network for it to be written successfully.

Typically, if you're all in the cloud this happens very quickly and it's all good. 1 or 2 milliseconds, 

depending, 10 milliseconds. We see a lot of customers, especially of OpenShift that want to run 
what we call stretch clusters, which is having nodes in two different complete zone – not even 

just availability zones, but data centers in maybe in New Zealand and Australia, for example.

Now if you've got your etcds, if your quorum is on one side of that, it's really fast. If one of those 
nodes fails and your quorum now stretches, etcd becomes really, really slow, because it's only 

as fast as the slowest quorum member, or as the fastest on the slow side of the quorum. That's 

© 2019 Software Engineering Daily �10



SED 853 Transcript

an interesting thing where these types of databases have all this logic at the application layer 

that are impacted when it's not just like, “Oh, attach a block storage device to it and call it done.”

[0:21:21.9] JM: There's a lot that can go wrong. With something like an etcd, there is a lot that 
can go wrong. If you were trying to run etcd on Kubernetes, there's stuff that can go wrong. 

People do run etcd on Kubernetes, right? Which is weird to think about, right? Because you 
need a Kubernetes – you need etcd to run Kubernetes in the first place. In addition to that, 

people will run other instances of etcd on Kubernetes.

[0:21:45.4] RS: Yeah. I've heard that some of the cloud providers actually have whole Kube 
clusters that only run control planes for other Kubernetes clusters. You might have 5,000 etcd 

databases on one cluster and 5,000 schedulers and things like that, which is interesting.

[0:22:01.6] JM: Is there some economy of scale to co-locating all of your etcd clusters as a 
cloud provider?

[0:22:09.6] RS: No, because it actually is probably tough on your disk performance, because 

these things are flushing writes to disk all the time. They need to manage these applications just 
like anything else. They need APIs for life cycling them. They need them to get rescheduled 

when the node fails and all that stuff just like you do.  think that's why they do it, is tooling that 
they're very familiar with.

[0:22:29.7] JM: Okay. Let's ease our way towards the operator conversation. Let's say I have a 

Kubernetes cluster. I want to run a distributed systems tool on it. Maybe I want to run Kafka on 
it. Maybe I want to run an etcd on it. What primitives does Kubernetes give to me that might 

make it easier for me to run something like a Kafka?

[0:22:54.3] RS: Yes, you've got all the objects that are in Kube at your disposal. You think of 
that as your toolbox. You've got stateful sets for doing some of the very simple staple workloads, 

like we talked about. Stateeful sets basically give you a run this pod and then wherever that pod 
goes, attach this storage to it. If the pod moves from node to node, move the storage from node 

to node with it. That gives you a durable place to write some data, for example. You've got load 
balancing primitives for doing service discovery and load balancing across all those nodes in 

© 2019 Software Engineering Daily �11



SED 853 Transcript

your cluster and you've got some auto scaling primitives, you've got secret rotation and config 

rotation and management. All these things, you can start to construct these pretty complex 
distributed systems. You just need something to glue it all together, basically.

[0:23:38.0] JM: What is a Kubernetes operator?

[0:23:40.4] RS: Kubernetes operator is taking the expertise of running a Kafka. All the expertise 

that it takes, the knowledge of the community that builds Kafka to install it, fail it over, to scale it 
up, scale it down. Is building that into a piece of software that uses that toolkit I just described, 

all the Kubernetes primitives, to make that happen specifically on Kubernetes.

To run Kafka, you might need to start these different tiers of services and then have them 
discover each other, elect a leader and start replicating some data. Maybe you want to back up 

some data somewhere else. All those things can use that Kubernetes toolkit to do and then you 
need something to orchestrate that and that is the operator.

[SPONSOR MESSAGE]

[0:24:28.4] JM: Buildkite is a CICD platform for running scalable and secure continuous 

integration pipelines. Buildkite helps you keep your builds fast and reliable, even as they grow 
large. Buildkite’s web UI and APIs are fully managed, well-documented and backed by great 

support and SLAs.

Teams can easily set up and maintain their own build pipelines and get help directly from 
Buildkite support. Build configurations are checked into source control and it works with github 

and github enterprise, GitLab and Slack workflows. There's also support for Webhooks, 
GraphQL and plugins, letting you extend Buildkite in new ways.

The Buildkite agent is open source, written and Go and you run it within your infrastructure. It's 

under your control, so you can be sure that the source code and the secrets don't leave your 
infrastructure. There's an AWS cloud formation stack to get you started and it auto scales from 

zero to hundreds of agents. Or you can deploy it to a Kubernetes cluster, a cloud provider, bare 
metal hardware, or a cluster of Mac OS machines.

© 2019 Software Engineering Daily �12



SED 853 Transcript

Visit buildkite.com/sedaily to learn more and see how Shopify used Buildkite as they scaled 
from 300 to 1,200 engineers. They migrated between cloud providers and they kept their build 

times under 5 minutes. Check it out at buildkite.com/sedaily.

Thanks to Buildkite for being a new sponsor of Software Engineering Daily. It's always nice to 
see new CICD platforms, such as Buildkite.

[INTERVIEW CONTINUED]

[0:26:25.7] JM:  What problems does the operator pattern solve? I see it is almost like a two-

sided thing. It solves a problem for the vendor, the application vendor. If I am selling Kafka to 
somebody, like if I'm Confluent and I'm selling you Kafka, you're going to need to install it, or 

we're going to need to help you install it. It also helps the application developer who is installing 
one of these things.

Whether we're talking about the person who is packaging up an application to help people – to 

help it get distributed, or the people who are actually installing one of these higher-level pieces 
like Kafka, it's very helpful. That's the problems it solves. Actually, let's talk in a little more detail 

about what it takes to create one of these things. Let's say I'm Confluent, I want to offer a Kafka 
distribution. What goes into specifying that, or building that operator?

[0:27:29.8] RS: One of the key things about distributed systems in general is you need to get 

your state from a central source and this is where Kubernetes builds on etcd. What operators do 
is use the Kubernetes API for their source of central state. You basically, just like all the 

Kubernetes components work under the hood, you have this idea of a desired state and the 
actual state. The either human operator inputs some desired state for this is a production Kafka, 

so scale it out this way and keep it HA or whatever. Then the operator is actually going to go 
make that happen.

What it’s going to do is translate your very high-level desires into a bunch of Kubernetes objects 

and desired state that's going to submit to the Kubernetes API. Then the Kubernetes API is 
going to make it happen. On initial install, nothing is going to exist, and so it's like, “Oh, I need to 

© 2019 Software Engineering Daily �13



SED 853 Transcript

go make these stateful sets, these deployments, make these secrets wired up to these pods, 

etc.”

What you're doing there is programming that reconciliation loop between actual and desired 
state. If you see that one of your pods went away because the node failed, for example your 

operator says, “Hey, desired state doesn't match the actual state. What do we need to do here? 
Oh, I need to go make a new pod somewhere else. Let me go schedule a new pod out.”

Where this starts to get above Kubernetes primitives is a deployment will do that for you, or a 

stateful set will do that for you. What if you need to rebalance data during that? “Oh, our shards 
are uneven now, let me go re-even those out.” That's the type of logic that you can put into the 

operator.

[0:28:59.8] JM: When I think about why people like Kubernetes, a lot of it has to do with the 
declarative format. I can declare how many nodes I want at all times and declare a bunch of 

other things. When you're describing setting up a Kafka cluster and all the things that I want to 
set up around a Kafka cluster using the operator pattern, can I still use declarative syntax, or do 

I need to include some imperative logic?

[0:29:30.5] RS: It's still all declarative, just like, these are Kubernetes objects at the end of the 
day. What we do is build on the extension mechanism in Kubernetes, which is the custom 

resource definition, CRD. You're still interacting with the same Kube API with Kube Cuddle, or 
any other tooling that you like and you're submitting objects that are now, instead of a 

deployment or a stateful set, the object type is a Kafka cluster, or a Kafka topic. It's still very 
declarative. That is you're inputting the desired state and then the operators then comparing that 

input with the current state of the cluster.

[0:30:02.9] JM: Okay. Could we go a little bit deeper? I know you're probably not Kafka, like a 
total expert, but a little bit deeper into what – let's say, I would need to set up in order to build an 

operator for Kafka, or maybe if there's something you're more familiar with, like Redis or 
PostgreSQL. I want to better understand what I need to do to configure this thing.

© 2019 Software Engineering Daily �14



SED 853 Transcript

[0:30:23.1] RS: Yeah, maybe let's step back for a second and think about if you picture this 

operator as your best employee, your best SRE you've ever seen, your SRE, your hero, your 
ops hero, and just picture that person when you're installing one of these pieces of software, 

we'll get back to building in a second. When you're installing it, having somebody over your 
shoulder, you're in a config file and you're setting some parameters and it's like, “Oh, no, no. 

That one and that one conflict with each other. You can't do that.” You're like, “Oh, thanks ops 
person. You're great.”

Then when you're scaling something on it's like, “Hey, hey, hey. Remember to do that thing 

before you do that.” It's having this this hero that's always, watching protecting you from 
yourself. That's because if you're not an expert at this piece of software for example, you just 

can't know all the primitives and iterations about do this before that and all these caveats.

The operator has that logic built-in from the experts of that community; if you're a Kafka 
committer, or a person that works on Cassandra, or somebody in the Tensorflow community, 

those types of things. Those communities then build that operator. They need to express all 
those rules, if you will, whatever would be in a wiki page, or a run book, or something like that, 

into their operator.

If you think about all the steps that need to happen to either elect a new master of a 
PostgreSQL cluster, or set up that replication in the first place and do your – or your MySQL 

Galera, any of that, it's that type of stuff that you need to bake into the operator. You need to 
think through, given nothing to something how do I install this and set it up correctly. Then what 

are the really important parameters that needed to be checking constantly to make sure that 
they don't regress, either through a system failure, or a human is trying to come in and mess 

with something that they shouldn't, that the operator can go back and correct that behavior. 
That's why I mentioned, they're looking over your shoulder, they're always watching for the 

correct configuration values and things like that.

[0:32:04.4] JM: There's a tool within the Kubernetes ecosystem called a helm chart, which is for 
doing, I believe installation pack – it's a package manager for Kubernetes?

© 2019 Software Engineering Daily �15



SED 853 Transcript

[0:32:15.9] RS: Yeah, it is basically a templating mechanism that you basically process these 

templates with a set of input and then out pops a bunch of Kubernetes manifest, that are then 
submitted on to the cluster. An operator can do all of that behavior and more. The problem that I 

see in helm is that there's not something – there's not this desired state loop that's going on, 
and so it's like a one-and-done submission.

There's a human in the loop, where if you trigger that via Jenkins or something like that. Once 

that's done, there's nothing looking for those objects. Whereas, an operator is constantly 
running. It's a long-running process. For example, you can build an operator out of a helm chart, 

but we actually have this process that's constantly running, looking for is this in the correct 
state? Is this in the correct state, and making changes accordingly? Then you can get of course, 

more advanced from this helm chart into very advanced things, like the Kafkas and the 
PostgreSQLs.

[0:33:05.7] JM: What's the runtime model for operators? You're talking about your system is 

going to get monitored, right? Your Kafka cluster that you have an operator for is getting 
monitored somehow, so the operator system that is built on top of Kubernetes is able to run 

some reconciliation loop and it also has insight into what's going on in the Kafka cluster so they 
can fix things. Tell me the runtime model for the operator system.

[0:33:34.9] RS: Yeah. You have one operator that's running on the cluster and these can either 

watch a specific namespace, or the entire cluster for all these Kafka objects and discover them 
that are the clusters. Then that is watching the Kube API for all of the objects that that operator 

has started up and is managing. That's one way. You can just use your Kubernetes toolkit and 
just Kubernetes APIs and get very far down the road.

What you can do is we have this concept of a maturity model for operators. When you get 

further into the maturity scale, you can actually start instrumenting your Kafka pods and knowing 
exactly the state of that application itself. Do you might know the number of topics and they're 

the depth of the messages in them and you might ought to start auto-tuning the cluster based 
on that, or you might use Prometheus to monitor some of the resource utilization and other 

requests per second of some of these topics and then acting on that data. That's where these 
start to get really, really powerful. That's all very much dynamic runtime stuff. It's just reacting to 

© 2019 Software Engineering Daily �16



SED 853 Transcript

what the cluster is doing, whether those are a human tweaking values and scaling it up, or just 

more traffic coming in and changing it accordingly.

[0:34:45.7] JM: The scale-up example, can we go a little bit deeper into that? Let's say at a high 
level, there are more users using my website, right? They're logging in, they're using more 

sessions, so I need to scale up my application. That includes increasing my application servers, 
and maybe scaling up the database. If I've got a Kafka cluster that's monitoring my user events 

and stuff and the user write traffic increases rapidly, my Kafka cluster is going to need to scale 
up. How is the operator recognizing that my Kafka cluster needs to scale up and then what's 

happening?

[0:35:25.1] RS: Yeah, so working back from there's going to be a trigger event of some sort and 
whether that is either requests per second coming in, or if you've instrumented your application 

and it's got a very specific memory mapping of like, “Hey, I've tripped over this threshold, 
something needs to happen.” You've got a sharded session store. “Oh, we got more sessions 

coming in, or we  had a bunch of new users create accounts, so we need to now reshard this 
thing.” “Okay, we've recalculate all the shards and we know that, oh, okay we need to boot a 

new shard and we're going to move a bunch of data over.”

You start. You create that pod, “Oh, we need this rate limiting proxy in front of it, so I know to put 
one of those in too. Okay, now let's register that with service discovery, so that we can start 

getting traffic into our new shard here.” Then health checks come up and okay, our new shard’s 
online, let's start doing the actual data movement to move the data over from the existing 

sessions. Then oh, look, now we've calculated that when we do a backup of this in an hour, 
we're actually going to go over the size of our persistent volume where we've been storing our 

backups. Okay, so let's now resize that volume so that we're going to be able to fit that in.

It's a cascading set of things that could happen when one of these events, these thresholds 
cross, and you need to start doing a bunch of stuff. Now the operator can do all this manually, or 

I mean, automatically so you're not doing this manually. You would never know that this even 
happened if you have the world's best operator, for example. These are things like, the system I 

described is roughly similar to a project from Google called The Test, which is highly scalable 
MySQL. They basically do have a series of proxies that direct you to shards of MySQL and have 

© 2019 Software Engineering Daily �17



SED 853 Transcript

a ways for scaling it out. They have an operator that they built that does this. These become 

pretty complex really quickly, but this thing runs MySQL at the scale of YouTube. It's pretty high-
scale.

[0:37:12.4] JM: Yeah. Yeah, we did a few shows about that. That model that Vitess takes to 

MySQL, that's broadly applicable to stateful applications, or stateful things, stateful modules, 
like Kafka.

[0:37:27.6] RS: Yeah, stateful distributed systems. Yeah.

[0:37:29.5] JM: Wow, interesting. Okay, so listeners to this show can listen back to the Vitess 

episode. I probably cut to the chase a little bit too quickly here, because I think we skipped over 
the real value of the operator pattern to the average developer, which from my point of view is it 

gets us closer to ironically a world where we don't need to think about Kubernetes at all, right? 

I was able to build an application eight years ago and I wasn't thinking about Kubernetes. I want 
to go back to that world, right? I want my database. I want my business logic in my Node.js 

application. I don't want to think about container orchestration. Explain why the operator pattern 
gets us closer to that world.

[0:38:19.3] RS: It's all about self-service at the end of the day. About that cloud-like experience 

that folks love, hence wide AWS and other things have taken off ginormously. It's that I want to 
start a new prototype and maybe we used a relational database, but we want to swap in a 

NoSQL for a prototype. Let me just see how this is going to work. It's the idea that you can just 
go quickly get a database without being an expert and let's say, Couchbase. Be off to running 

prototyping it and be done with it an hour or two, or a day, or a week, or whatever. Then come 
back and say, “Hey, we're ready to do this thing.” It makes sense that frictionless experience is 

what we're going after. Not just, “Oh, let me go find this blog post about how to do Couchbase. 
Okay, I understand that. I'm going to go dig into the configuration files. Okay, that's great. Now 

let me go set up a load balancing and write all these Kubernetes UML objects and blah, blah, 
blah, blah, blah.”

© 2019 Software Engineering Daily �18



SED 853 Transcript

The operator can do all that complexity for you. You just say, “Hey, I want an HA Couchbase 

cluster. Put it in my namespace, and so it eats against my cluster quota and let's go to town.” 
The operator can do that if your admin says, “Hey, everybody on this cluster can have 

Couchbase clusters.” Then you can do it in this self-service manner just by using the 
Kubernetes API; create a new object that is Couchbase cluster and then boom, you get it. It's 

increasing time to market, or time to prototype in this example versus having to –

[0:39:37.4] JM: Decreasing.

[0:39:38.4] RS: Or decreasing, excuse me. You don't want to have to fight the system to get the 
resources that you need to do your job.

[0:39:45.1] JM: What's my experience for deploying an operator? If I wanted to play a 

database, or deploy a Kafka cluster there?

[0:39:53.8] RS: Yeah, so if the operator is already installed, which is typically more of an admin 
task, if you're just an end-user engineer, then you – like in OpenShift for example, we have 

great UI for browsing the capabilities that an admin is provided to you. This might be Kafka 
clusters, Mongo clusters, Couchbase, PostgreSQL. You can go in and find all those. Then it's 

just one Kube YAML object that is this high-level config that you pass in and then the operator 
knows to – if you don't set a value to default it to something smart and things like that.

You just say, “Oh, for a Couchbase, give me a cluster size 3. Then here's the secret for the 

default account that I want to use stored as a Kubernetes secret,” then you're off and running. 
Of course, you can tune all these, like bucket settings and stuff like that if you want to later on. 

That's the power of the operator. You don't need to be an expert in Couchbase. Obviously, you 
need to know how to use it and connect it to your application, but you don't need to care about 

how those components discover each other when they're booted, or which ones need to be 
restarted first when a software upgrade happens, that type of thing.

[0:40:49.9] JM: Red Hat created this thing called operator hub, right? This is a place where 

people can browse these operator YAML files, right? Who are writing those operators? Is it like, 
Confluent goes and writes a Kafka operator, or PostgreSQL, goes and writes a PostgreSQL 

© 2019 Software Engineering Daily �19



SED 853 Transcript

operator, Couchbase goes and write to Couchbase operator. Where are those operators coming 

from?

[0:41:13.5] RS: It's a mix. What we're going for with the operator concept and operator hub IO 
is to go to the experts. We want to get a Mongo operator from MongoDB Inc., because they are 

the experts. It doesn't have to be a commercial company. We want to go to the Tensorflow 
community for a Tensorflow operator, because they're the experts. All that operational expertise 

that it takes to run and install and scale and failover those pieces of software, we just want to go 
to the expert.

In the software engineering realm, this typically ends up being backed by a commercial 

company. Red Hat also wants to have certified operators, so that our enterprise customers can 
have somebody to turn to when they want support on your Redis cluster, for example. That 

doesn't mean that there's not an open source alternative as well. We have a path for all kinds of 
communities. Then we have a bunch of products and open source that we do as well at Red Hat 

internally that are operators.

[0:42:06.8] JM: What's been the adoption for operators at this point?

[0:42:10.8] RS: It's been really powerful. If you were at KubeCon last week, or you've been at 
previous KubeCons, folks are talking about it and it's – we've reached this phase in the adoption 

of Kubernetes, where we've got our stateless apps down, we've got our stateful applications that 
are pretty simplistic with just stateful sets, like we talked about earlier. Now we're into this realm 

of running pretty complex things on top of it. Your banks and e-commerce shops and stuff now 
are pretty complicated.

You've got these doing rate limiting and quality control things. You've got machine learning on 

an audit logs. You've got your scale-up web tier. You've got maybe a NoSQL caching tier, like 
Redis. Then you've got your super-persistent PostgreSQL or Oracle databases maybe, if you 

hate yourself. All these things are really complex and they've got teams running each one of 
them. Nobody can know the operational complexity of running all of that, especially when you 

need to run it in 10 different GOs and then eight different staging environments. You've got a 
user acceptance environment and you need to stand up all these different stacks. Then your 

© 2019 Software Engineering Daily �20



SED 853 Transcript

slacking people, “Hey, what's the latest version of your thing and where do I get your bash script 

to install it or something?”

It's nuts where you can just say, “Hey, here's our operator and here's where they're published. 
You can get a local copy of our front-end stack, the latest copy, here's the stable one, here's the 

beta one, etc.” You can start to construct these really complex applications. It might just be 10 
operators at the end of the day, that type of thing.

[0:43:39.9] JM: That's great, because it sounds like there is not – sometimes in the tech 

industry, you get inertia, right? You get look, I've been describing why I've been standing up my 
Kafka cluster manually for a long time. I don't want to get involved with this operator thing. It 

disrupts my inertia. That's not happening as much?

[0:44:02.7] RS: I mean, it's hard to say because there's a whole bunch of Kafka clusters out 
there. The nice thing is that at the end of the day, you're still talking into Kafka. You're not 

changing – you’re changing your deployment paradigm, but not your consumption paradigm. 
Then hopefully at the same time, unlocking more self-service for your engineers. You're freeing 

up their time from fighting, getting this stuff deployed and then as well as day-two operations. 
Now they don't need to be an expert in digging through all this stuff at 3:00 a.m. when they've 

got some outage on the coffee cluster, because the operator can go in and knows how to tweak 
those settings to bring it back up to production-ready, things like that.

[0:44:39.1] JM: What are the shortcomings of operators today? There any bugs, or usability 

issues?

[0:44:48.1] RS: I think it's just wrapping your head around this new model of the world where 
you're sourcing your state from the Kubernetes cluster and you're interacting with these 

applications at a higher level, just like you would a cloud service versus at the individual VM 
level that somebody might be used to. I just SSH into this thing and drop into a SQL command 

prompt and start screwing around with the database, or tweaking some of its configuration.

You're entering from a higher level through the operator, so that you're protecting yourself and 
preventing two people from making the same change at once and that type of thing. It's a little 

© 2019 Software Engineering Daily �21



SED 853 Transcript

bit different model of working, but just you can't screw around with your RDS database at 

Amazon, you can't SSH into those machines and start poking around. I think it's a new model of 
the world that people are coming around to pretty rapidly.

[0:45:35.8] JM: Wait, I'm sorry. Maybe I misunderstood the last point. I set up Kafka with my 

operators, you're saying I should just never access those clusters directly, or –

[0:45:47.8] RS: Well, it's giving a more rigor and making programmatic changes, versus one-off 
manual changes to components that might have ripple effects through the system that you're 

not even aware of. Having a higher level piece of software that is looking out for those changes 
basically. It's not that you can't reconfigure things, for example.

[0:46:07.6] JM: Any interesting operator case studies? We talked about Couchbase, or Redis or 

Kafka. Anybody who's developed an operator that you've talked to at length about their 
experience crafting it and getting it deployed to operator hub and consumed by the public?

[0:46:26.1] RS: Yeah. We had a community event right before KubeCon a week or two ago. I 

had chaired an operator panel and folks were talking about building their operators. One of the 
questions I asked was what did you understand about your software by building this operator? 

The idea that you need to – maybe you had some hard-coded configuration values that you 
wanted to make more tunable, and so you fix that problem and brought it up to a higher level. 

One group shared, they actually found that their leader election bug, or their code had a bug in 

it, where it didn't work correctly in all different edge cases. Because they started – they were 
thinking through how do they implement that in the operator and discovered this. I think that's 

interesting. It's forcing you to tease apart your application hierarchy and architecture a little bit 
through the process of this, which I thought was interesting. That's a success story on the 

building side of it is finding some bugs on the implementation side, or running one of these 
operators.

We like to point at one of our old CoreOS customers was wanted to run Prometheus and that 

was their blessed tool for running container native monitoring, because it just understood what 
was going on in their Kube clusters really well. This is an organization that lets folks make their 

© 2019 Software Engineering Daily �22



SED 853 Transcript

own technology decisions and everybody started just coalescing on Prometheus. What they did 

is install the Prometheus operator on their clusters, and so each team can run their own 
Prometheus cluster and change how much RAM it's being used and how long it's going to keep 

its metrics and different replication settings and stuff like that, but they all use it through the 
operator.

They were running I think three 350, 380 different Prometheus operators, Prometheus clusters 

via operator for all their different environments and teams and this, that, the other development 
environments, which is nuts. Show me somebody that can run a database tier, run 300, 400 of 

these things with basically no humans involved. These folks were providing very high-level 
config in getting these production ready Prometheus clusters out, with no ongoing maintenance 

tax, or understanding exactly how Prometheus works under the hood. They're not following the 
get commits and the github activity and things like that. They're just getting these ready-made 

Prometheus clusters.

[SPONSOR MESSAGE]

[0:48:40.8] JM: Software Engineering Daily is a media company and we run on WordPress, just 
like lots of other media companies. Although it's not just media companies that run on 

WordPress, I know of many organizations that manage multiple WordPress sites. It can be hard 
to manage all of these sites efficiently.

Pantheon is a platform for hosting and managing your WordPress and Drupal sites. Pantheon 

makes it easier to build, manage and optimize your websites. Go to pantheon.io/sedaily to see 
how you can use Pantheon.

Pantheon makes it easier to manage your WordPress and Drupal websites with scalable 

infrastructure, a fast CDN and security features, such as disaster recovery. Pantheon gives you 
automated workflows for managing dev, test and production deployments. Pantheon provides 

easy integrations with github, CircleCI, JIRA and more. If you have a WordPress, or a Drupal 
website, check out pantheon.io/sedaily.

Thanks to Pantheon for being a sponsor of Software Engineering Daily.

© 2019 Software Engineering Daily �23



SED 853 Transcript

[INTERVIEW CONTINUED]

[0:50:03.3] JM: If I have an operator and a bunch of users have deployed it and I want to 
update my software, let's say I'm updating the database, like I'm a database vendor, I publish a 

database – I've published an operator for my database, my users have deployed it. How do I 
push out an update to them?

[0:50:24.3] RS: This is where something like operator hub is really key; it gives you a conduit to 

publish new versions of your operator and either have it discovered on a one-by-one basis, or 
actually push that down to the clusters themselves and say, “Hey, you've installed and 

subscribed to a stream of updates from MongoDB about the Mongo operator.” This Mongo 
operator has entered in this contract, such that it knows how to do rolling updates of the 

application itself. What that looks like is Mongo itself builds in all the logic to go from version 
1.1.1 to 1.1.2 for example, or maybe even a major version 1.2.0. Package that in an operator 

and you install that on the cluster and the operator knows how to read the existing databases 
that you have and say, “Hey, I understand this new version of Mongo, now let me transition 

these databases.”

If it needs to install a new component and wire it up, it knows how to do that and uses the 
Kubernetes toolkit that it has to do that. Maybe it needs to shut down or deprecate a different 

component, so it knows how to do that. Maybe deploy the new one before you deprecate the old 
one. All that logic can be in there. Then take a backup before, or start replicating data, or 

change these environment variables whatever it is.

The rich part of the operator is you have this place to do all that knowledge. Something like 
helm doesn't know how to do that. It's just going to blindly create some Kubernetes manifest, 

but it doesn't really know how to introspect what's there, what do I know about specifically what 
it takes to upgrade Mongo and then make that happen.

[0:51:53.1] JM: You and I were both at KubeCon this month, May, early May 2019, or mid-May, 

I guess. Give me your reflections on the ecosystem circa summer 2019. What was your mind 
changed about, or what new insights did you have from the conference?

© 2019 Software Engineering Daily �24



SED 853 Transcript

[0:52:13.9] RS: I think we're seeing most vendors now have fully embraced Kubernetes. I 
mean, I think people have been saying for a while that Kube has won the orchestration wars. 

You're seeing almost every vendor, Oracle's out there talking about how you can run their 
software in containers. That's when you know you've reached not the long tail maybe, but you're 

towards heavy and to over the curve of adopters. I think that's really great. Folks are now seeing 
that you can run basically any software under the sun on Kubernetes containers at the end of 

the day, or just Linux processes running on a Linux host. Now we've got Windows hosts.

I think the ecosystem is so broad now that if you're going to targeting next-generation 
infrastructure, your go-to-market is basically on Kubernetes. I think it's cool to see that wave 

actually happening. This is one of the things that we talk about with our operator partners is if 
you want to embrace the entire Kubernetes ecosystem and have a great experience for your 

product, then operator is the best way to install upgrade, manage failover your piece of 
software, and then you can run on any Kubernetes provider out there, which is really, really 

powerful.

[0:53:21.5] JM: Well, that's true. Although in many deployments, people have some lock into a 
particular cloud provider, like IM privileges. Well, I guess if you –

[0:53:33.3] RS: If you're only on the cluster, you're not even interacting with IM.

[0:53:37.1] JM: Wow.

[0:53:38.1] RS: This is the beauty of using Kubernetes as your toolkit. It's not to say that you 

can't integrate with external services if you want, but if you are just using Kube internally, then 
you aren't locked into anything. This is the beauty of an operator, is if you want to go to 

Confluent and purchase their product, you can use it on this cloud provider, you can use it on 
VMware, you can use it on bare metal, it works the exact same.

[0:53:59.5] JM: They can give you a proprietary enterprise distribution, right? If they want to 

have –

© 2019 Software Engineering Daily �25



SED 853 Transcript

[0:54:03.6] RS: Yeah, absolutely.

[0:54:04.6] JM: If they want to have a closed source binary, that's pretty cool. Let's say I want to 

deploy – I do want to deploy most of my resources in a cloud agnostic way, but maybe I want to 
use Amazon for SageMaker, or whatever. I want to have my application and database located 

on AWS data center, so that there's low-latency between SageMaker and my applications. Are 
there well-defined patterns for how to do those integrations? Integrations between this, because 

what you're describing is the dream, right? The cloud agnostic deployment of resources. How 
would I interface between those resources and the cloud-specific resources?

[0:54:55.3] RS: It depends what it is. If you think about I'm unlocking a swath of these is just like 

a hostname and a username and password away. You can have headless services in 
Kubernetes that point out of the cluster somewhere and you can have a secret that stores 

credential information. Then you can start talking to a huge swath of these, whether it is a 
database from Azure, or a database from Amazon, for example and your application knows 

nothing about it. You're using Kube primitives still.

Also, your applications can know how to very specifically go talk to those resources, if that is 
something that you want to do. We've seen folks have operators that go orchestrate third party 

DNS APIs, or reconfigure hardware load balancers and things like that. I think there's a ton of 
choices there for how you want to integrate. One of the concepts that we are currently pushing 

forward in our operator special interest group is the idea of service bindings, which start getting 
into what you're talking about.

If you're familiar with the open service broker API, there's this concept of you’ve got a front-end 

and a back-end, and they need to share a credential to talk to each other. That is called a 
binding. We want to bring that into the operator world, where you can have two operators 

working together to accomplish a common task. Where you see this is pick some random off-
the-shelf piece of software that might just say, “Hey, I need a relational database to work.”

This is where you would go file a ticket with your DBAs and go get a PostgreSQL cluster or 

something like that. Now it could be either go do that, or, “Oh, I actually know how this 
PostgreSQL operator works,” and use the operator to go fulfill that. That's I think the new model 

© 2019 Software Engineering Daily �26



SED 853 Transcript

that we'll get into is here's my piece of software, I require Redis database and a PostgreSQL 

database. You have these two operators installed already. Boom, I know how to go get 
databases. They're up and running in 10 milliseconds, that thing.

[0:56:41.2] JM: Does AWS take part in the operator sig at all, or who's in there?

[0:56:49.7] RS: It's a bunch of random folks from some of the partners we've talked about, like 

Redis and Mongo and Couchbase, and some folks from IBM and a smattering of smaller 
companies. Amazon is definitely active in the operator space however, because they have a 

Amazon service operator.

What this does is really cool, this is talking about – this is taking the interacting with external 
resources to the extreme. They model an S3 bucket as a custom resource definition that their 

operator is managing and listening for. When you make a new S3 object, it actually will go on 
the back-end, go make a real S3 bucket and will –

[0:57:24.2] JM: Oh, my goodness.

[0:57:24.9] RS: - turn stuff back about it. It works with a number of their services, I think 10 or 

20 of them.

[0:57:30.0] JM: That’s like extending their lambda-friendly, event-driven model to your 
Kubernetes.

[0:57:34.9] RS: Right into Kube, which is really exciting. Even if you did want a cloud database, 

you can go make an RDS object, then we’ll go make that RDS database for you and then return 
information back about it. This is its name. This is how you address it, etc. What this allows you 

to do is just work off a Kube API, but then integrate with the cloud where it makes sense. 
Hopefully, we'll see other cloud providers building this type of functionality in, so that you are just 

using – your Kube R back is writing to the Kube audit log and then you're getting cloud 
resources out at the other end.

© 2019 Software Engineering Daily �27



SED 853 Transcript

[0:58:04.7] JM: Coming back to your reflections on the technology industry, what do you think 

of Google managing to do this jiu-jitsu of introducing Kubernetes into the world, then seeing the 
dynamics between AWS? Basically, now it's AWS – I think of AWS as the – I don't know the 

Avengers ecosystem too well, but I think there's some gigantic, titanic alien or something and 
then there's the Avengers and they're all – they're led by Captain America. You've got Google 

leading the Avengers and it's all the other people and just marshalling versus AWS. AWS is so 
friendly with the ecosystem in certain ways. It's certainly entertaining for me to watch. What 

have been your reflections on that competitive dynamics?

[0:58:55.6] RS: I think what's great about the Kube community in general is it's showing us how 
we can all cooperate on open source and still put forward maybe other strategies that we have, 

or other business goals that we have, but still cooperate together.

[0:59:08.6] JM: Even if you're AWS.

[0:59:09.9] RS: Yeah. I mean, if you think about Google, VMware, Microsoft, AWS, all have their 
hooks into their platforms for running Kubernetes on their infrastructure. You make ELBs on 

Amazon, you could add an Azure load balancer on Azure, etc. It's really a powerful way to 
plugin, but then also feel you have the correct amount of tooling that is agnostic in that a hybrid 

cloud scenario, where you actually do want to use a Kube API, not an Amazon API or an Azure 
API to get your applications that would –

[0:59:37.8] JM: Which is what we all want as engineers.

[0:59:40.2] RS: I think that's interesting seeing that happen. There's all these open source 

licensing shenanigans that are happening right now with different databases and things like that.

[0:59:49.0] JM: You got a perspective on that?

[0:59:51.4] RS: Just that the Kubernetes is showing us how we all can work together and 
everybody can make money and get their needs met without having to resort to being really 

hostile. That comes back to the project is run really well. It has a neutral governance of the 
CNCF and why that's really important there. There's a place for these companies to go to if they 

© 2019 Software Engineering Daily �28



SED 853 Transcript

have a disagreement to start figuring it out with the community as part of that as well. It's not just 

these two companies talking behind closed doors and things like that.

I think you need to go to market with somebody that is not going to clobber your business at the 
end of the day, if you're one of these database companies, or one of these open source 

communities that are just going to see Amazon reap all the profits off of your hard work is a 
pretty hard thing for them to stomach.

[1:00:34.4] JM: Oh, come on. Do you really feel that way, or is that you speaking as a Red Hat 

employee?

[1:00:38.8] RS: I mean, I think you're seeing it. I think these companies are – if they don't 
become profitable, then they're going to go under. Though it's like, what happens to that 

community that they built? Do they go start working for Amazon now? That wouldn't be that bad, 
I guess, but as long as Amazon continued that community.

[1:00:53.4] JM: Sure, but their indignation. They're so indignant. They're so, “Oh, this is not – 

and what Amazon is doing is not in the spirit of open source.” I don't like that argument, because 
we don't have morality of what open source is, right? Open source is just open source. They're 

making these arguments that for with righteous indignation. It’s just, come on.

When you read these blog posts of the open source companies and they're saying that Amazon 
is eating up our business model. It’s like, well, okay, that's a business problem. It's not a morality 

problem.

[1:01:34.5] RS: Fair. I don't think it's necessarily – it's not a morality problem, but we need to 
figure out how to make the long-term health of our space in general, not just be dominated by 

one or two cloud players if they're reaping all the profits in the ecosystem.

[1:01:48.4] JM: Is that the fault of the cloud players, or the fault of the ISVs who raised money 
in a certain capital structure and placed all the wood behind the arrow of their single open 

source project?

© 2019 Software Engineering Daily �29



SED 853 Transcript

[1:02:00.7] RS: Yeah. I mean, that's where you need – it's a pivoting into either services, or 

hosted offerings or other things like that. Yeah.

[1:02:07.5] JM: Absolutely. Another business, something. That's what irritates me about it is if I 
was a developer at one of those companies, I'm like, “Really, management? You're going into 

the licensing business instead of the innovation business?”

Anyway, a final question. CoreOS was acquired by Red Hat. What have you learned about 
acquisitions?

[1:02:30.9] RS: It's interesting. We've –

[1:02:32.3] JM: Then right now, it’s acquired by IBM.

[1:02:34.1] RS: We actually have a current acquisition that is ongoing. I think one interesting 

thing that I've seen at Red Hat about the IBM acquisition is just that everyone's eyes opened up 
to what that experience is like. Red Hat has acquired a number of different companies, Ansible 

and 3scale and a bunch of others.

Now that they've been acquired, they understand what they did to those companies where you 
just wake up one day and your whole world has been flipped upside down. Typically, maybe not 

in a bad way, but it's an exciting thing. Now you're a part of this larger organization and you 
didn't really have a choice in that. All the Red Hatters I think are now experiencing that and 

know what that's like, which is interesting.

I've been really happy with the integration of CoreOS into Red Hat. Super proud of our team, 
because all of our technology is basically forming the basis of OpenShift 4 and a lot of the other 

strategy rolling out of some of the business units in Red Hat. Container Linux was our container-
focused Linux distribution that our namesake used to be called CoreOS. That now lives on in a 

new operating system from Red Hat, a new commercially supported one that's on the pedestal 
with RHEL and Fedora, which is pretty awesome.

© 2019 Software Engineering Daily �30



SED 853 Transcript

Then all the technology that we worked on in Tectonic, which was our Kubernetes distribution, 

forms the basis of OpenShift 4. All the all the things we had about large-scale machine 
management and driving management of those machines from the Kubernetes cluster now 

forms OpenShift, which is a ginormous business.

[1:03:59.7] JM: Wow. So validating.

[1:04:01.3] RS: Yeah. I'm pretty proud of the team for all that. Then a bunch of our open source 
work, etcd –

[1:04:05.8] JM: Wait, a lot of stuff from the lessons from Tectonic and all that stuff in CoreOS, 

you got to basically bring that to life at scale with OpenShift 4?

[1:04:16.9] RS: Yeah, yeah. OpenShift is a extremely critical division – IBM’s CEO, Ginni was at 
Red Hat Summit and mentioned OpenShift a number of times.

[1:04:26.4] JM: By the way, talking about an open source company that was able to find a 

second product and move into the innovation business, or move further into the innovation 
business, rather than the licensing business, Red Hat is a perfect example.

[1:04:41.2] RS: It's our expertise in Linux. We always say that containers are Linux at the end of 

the day. We're just doing that in a clustered manner. Folks have been doing very large-scale rail 
deployments for a very long time. This is bringing that networking and orchestration layer to it 

that we found that we needed with the container Linux and CoreOS machines, like we talked 
about in the very beginning. Managing Linux at scale is really hard and need to be architected a 

little bit. That is the OS that we produce that we use inside of OpenShift for OpenShift 4.

[1:05:09.8] JM: Nice work. It must be really validate. I mean, it's interesting, and we'll wrap-up 
in a sec, but it's interesting the Kubernetes ecosystem, what's cool about it is the collaboration 

and the coopetition. One side of that is acquisitions. Acquisition is a nice form of officiating some 
collaboration. It's like, you see the collaboration in these special interest groups, or user groups, 

or forums, or whatever. When the collaboration gets tight enough, you could just have these 
acquisitions and other forms of consolidation.

© 2019 Software Engineering Daily �31



SED 853 Transcript

[1:05:44.2] RS: I think that was the exciting thing and why that was the best place for CoreOS is 
that we already worked with all these engineers in the upstream community. They contributed 

some to etcd and did a lot of scale testing on etcd, because OpenShift are some of the largest 
clusters out there Kubernetes-wise. When we moved from V2 to V3 of the etcd API and moved 

to a GRPC from an HTTP API, a lot of that was driven by scale. That was input from Red Hat 
and Google on how do we get Kubernetes to the next level of having 10,000 nodes in a cluster, 

etcd is going to start being the bottleneck there.

We collaborated with them on a lot of the type of effort and plugging that in into successive 
versions of Kubernetes. We worked with all those folks as well on the OCI spec and some of the 

work that we were doing around our earlier spec called appC. Our CTO, Brandon Phillips was 
the primary driver behind the scenes of all that OCI work. A lot of organizations took the credit at 

the end-result level, but he was the one driving that spec and it was a spec that was driven from 
CoreOS’s announcement of our rocket container runtime that really kicked that whole thing off.

[1:06:47.5] JM: Rob, it's been great talking to you. Thanks for coming on the show.

[1:06:49.3] RS: Absolutely. It was fun.

[END OF INTERVIEW]

[1:06:54.6] JM: DigitalOcean is a simple, developer-friendly cloud platform. DigitalOcean is 

optimized to make managing and scaling applications easy, with an intuitive API, multiple 
storage options, integrated firewalls, load balancers and more. With predictable pricing and 

flexible configurations and world-class customer support, you'll get access to all the 
infrastructure services you need to grow.

DigitalOcean is simple. If you don't need the complexity of the complex cloud providers, try out 

DigitalOcean with their simple interface and their great customer support. Plus they've got 2,000 
plus tutorials to help you stay up to date with the latest open source software and languages 

and frameworks.

© 2019 Software Engineering Daily �32



SED 853 Transcript

You can get started on DigitalOcean for free at do.co/sedaily. One thing that makes 

DigitalOcean special is they're really interested in long-term developer productivity. I remember 
one particular example of this when I found a tutorial on DigitalOcean about how to get started 

on a different cloud provider. I thought that really stood for a sense of confidence and an 
attention to just getting developers off the ground faster. They've continued to do that with 

DigitalOcean today. All their services are easy to use and have simple interfaces.

Try it out at do.co/sedaily. That’s do.co/sedaily. You will get started for free, with some free 
credits. Thanks to DigitalOcean for being a sponsor of Software Engineering Daily.

[END]

© 2019 Software Engineering Daily �33


