
SED 684 Transcript

EPISODE 684

[INTRODUCTION]

[0:00:00] JM: Kotlin is a statically typed programming language that started as a JVM language.

It gained popularity because it reduces the amount of boiler plate code required for a typically
Java project. Many of the early adopters of Kotlin were building Android apps or Java

applications, but it’s grown to have a variety of use cases including at companies like Uber,
Pinterest and Atalassian.

Andrey Breslav is the lead language designer of Kotlin at JetBrains. He joins the show to

describe the original goals of Kotlin, the compilation path of the language and how it has moved
beyond its days of only running on the JVM.

Before we start, I want to mention that we are looking for a couple of roles including writers and

podcasters. We have these roles mentioned on softwareengineeringdaily.com/jobs. So whether
you’re interested in operations or editorial, we’d love to have you apply.

[SPONSOR MESSAGE]

[00:01:07] JM: Accenture is hiring software engineers and architects skilled in modern cloud

native tech. If you’re looking for a job, check out open opportunities at accenture.com/cloud-
native-careers. That’s accenture.com/cloud-native-careers.

Working with over 90% of the Fortune 100 companies, Accenture is creating innovative, cutting-

edge applications for the cloud, and they are the number one integrator for Amazon Web
Services, Microsoft Azure, Google Cloud Platform and more. Accenture innovators come from

diverse backgrounds and cultures and they work together to solve client’s most challenging
problems.

Accenture is committed to developing talent, empowering you with leading edge technology and

providing exceptional support to shape your future and work with a global collective that’s
shaping the future of technology.

© 2018 Software Engineering Daily �1

SED 684 Transcript

Accenture’s technology academy, established with MIT, is just one example of how they will
equip you with the latest tech skills. That’s why they’ve been recognized on Fortune 100’s best

companies to work for list for 10 consecutive years.

Grow your career while continuously learning, creating and applying new cloud solutions now.
Apply for a job at Accenture today by going to accenture.com/cloud-native-careers. That’s

accenture.com/cloud-native-careers.

[INTERVIEW]

[00:02:45] JM: Andrey Breslav, you are the lead language designer of Kotlin at JetBrains.
Welcome to Software Engineering Daily.

[00:02:51] AB: Hello. Thanks for having me.

[00:02:52] JM: Yeah. I’d like to start off by talking a bit about what you do. So I haven’t met

many people who are professional language designers. How did you get involved as a language
designer?

[00:03:06] AB: Well, it’s I think mostly an accident as it usually happens. I was doing some

language related research for my PhD, which I never finished, and just basically friends and
former coworkers invited me over to JetBrains where they were discussing possibility of creating

a language. It was interesting. I was very skeptical actually in the beginning about creating a
progress language from scratch. But that was a very insightful conversation. So I got really

convinced that we should do it and that we can pull it off. Basically, that’s how it started. So I
was never preparing myself to be a language designer.

[00:03:43] JM: Had you been studying language design at all?

[00:03:45] AB: I don’t think there is such a thing as studying a language design. Really, I mean,

there is no textbook that I’m aware of.

© 2018 Software Engineering Daily �2

SED 684 Transcript

[00:03:52] JM: Well, there’s programming languages courses.

[00:03:54] AB: Yeah, there are. Well, I had such a course in the university. I never taught one,

by the way, which I may do at some point. I did some theoretical computer science that involves
types systems and other things also at the university. So I was kind of prepared. So I knew

some of the theory and could understand the language in a textbook, let’s say.

[00:04:16] JM: What was it about your background that made your friends reach out to you and
say, “Hey, maybe you should come over and talk to us about whether we should be designing

this brand new language.”

[00:04:27] AB: For my PhD, I was working at domain-specific languages, which is also a kind of
language design, but not general purpose languages just like for small languages. It was my

academic interest. I was reading papers in this topic, especially about composability and the
extensibility of languages. Yeah, I think this was the main reason as far as I remember.

[00:04:47] JM: I guess we could start getting into Kotlin. I would like to revisit that domain-

specific language stuff a little bit later, but to get to Kotlin. Kotlin is a JVM language. It’s 100%
interoperable with Java. Why was Kotlin originally created?

[00:05:03] AB: Well, Kotlin is now somewhat more than a JVM language, but it was conceived

as one. It was back in 2010, and the situation of the Java ecosystem was such that Java was
the most popular language as it is now still on the JVM, but it wasn’t progressing much. In any

case, there was a strong feeling that many people could benefit from a new language for this
platform in terms of productivity, in terms of really modern programming experience. People at

JetBrains wanted such a language for themselves as much as for their users.

So before I joined, they evaluated existing alternatives on the JVM, at that time it was Groovy
and Scala. There were concerns about either of them. So they were seriously thinking about

creating a new one that would be 100% interoperable and would enable the tooling very well,
because JetBrains is a tooling company. So we heavily rely on tooling in our everyday life, and

our users rely on that too. These were main driving constrains, to be pragmatic and to be
toolable. Yeah, this is why it was created.

© 2018 Software Engineering Daily �3

SED 684 Transcript

[00:06:18] JM: As you said, it was originally a JVM language. Can you talk about the
advantages of building a language on the JVM platform?

[00:06:28] AB: There are so many. There was a huge ecosystem. So JVM as a platform brings

so many libraries, so much user expertise, framework, tools, everything, and an excellent virtual
machine first of all actually. So it’s a very rich ecosystem with a lot accumulated by the

communities. Kotlin can access all of that. Every library that’s available for the Java language
that’s been written over the last 20 years is available to Kotlin users. So you don’t start from

scratch. You don’t have to rewrite every library out there.

Also, all the other tools, like profilers, debuggers, everything, and the virtual machine is
excellent. It’s very famous for being very robust and very efficient. So it’s a very good starting

point. Also, the virtual environment takes care of so many things. You don’t have to care about
as a language designer, like your memory model is just taken care of. You just rely on that.

It is also like nothing limits the dreams of a programmer as a compiler, right? So the same for a

language designer and the runtime. So if I designed my language for JVM, it does a lot for me,
but it also constrains me, but I think the benefits outweigh all the possible limitations by far.

[00:07:44] JM: What are some of those constrains.

[00:07:46] AB: Well, there is basically no direct memory manipulation. For example, if anything

has to be passed around, it’s either a primitive, which is a very limited set of representations, or
an object, which has an overhead of another header. This is something that the Java team is

now working on in Project Valhalla, but still in the production, JVM today, if I want to pass two
values together around my program, I have to wrap them in an object and it’s memory

overhead. That’s just one limitation. Also, of course, it’s a mature ecosystem. It has accumulated
a lot of legacy, like we have a monitor in every subject, for example, our arrays, our covariant,

so on and so forth.

Kotlin is trying to kind of fix it on the surface. So in the Kotlin language, there was no monitor in
any object. So you can’t just synchronize randomly on objects. You cannot use erase as

© 2018 Software Engineering Daily �4

SED 684 Transcript

covariant. They are invariant. So there are no erased or exceptions in Kotlin programs that do

not abuse the underlying Java layer and many other things like this. So we’re trying to reface as
much as we can on the language level.

[00:08:56] JM: When Kotlin was designed, if I recall, this was around the time when, I guess,

Scala and Groovy, those languages had been designed on the JVM and they were great for
doing functional programming, but Kotlin was more taking the approach of, “We’re going to stick

with just non-functional –” What’s the other – Imperative? No, it’s not imperative.

[00:09:20] AB: Well. It’s confusing at least.

[00:09:23] JM: Confusing, okay. But Kotlin was more about the productivity side of things. It’s
like, “Let’s make Java look more like Ruby.”

[00:09:29] AB: Well, I wouldn’t say that. I never said that. So let’s try to sort out the terminology

here. There is like the purely functional paradigm, like Haskell is, for example, a purely
functional language. Kotlin is nothing like that, and Scala is nothing like that either. Actually,

mainstream languages are not pure paradigm anymore. So modern popular language is actually
something a single paradigm, like a functional language or an object-oriented language.

We mix and match different ideas from different traditions, and Kotlin as well as many other

languages combines object-oriented, functional, structural and just gets some kind of balance.
So it’s very much a question of how you balance different ideas in the same design. Kotlin had

functional features from the very beginning, high order functions, function types, lambdas, were
all in the design from day one.

So in this respect – Of course, generics. Generic classes are definitely feature motivated by

functional background. So all these is from the functional side of things, but we also have
classes and interfaces, which is more from the object-oriented side of things. So it’s just what

we believe to be a pragmatic balance of these ideas.

© 2018 Software Engineering Daily �5

SED 684 Transcript

[00:10:47] JM: What’s the path to a Kotlin program being interpreted and compiled down to

Java bytecode?

[00:10:56] AB: Just run the compiler.

[00:10:57] JM: What are some of the things that will get converted into – I mean, is it just
directly from Kotlin code to Java bytecode, or is there an intermediate representation before

going to Java bytecode?

[00:11:09] AB: Oh, yeah. There was a number of things inside a compiler. So the compiler that
we use now for the JVM, it builds a representation of the program matching the source very

closely, because we also use it in the ID. Then we generate bytecode from that with the aid of
some static analysis type checking, so on and so forth. We’re working on a newer version of the

compiler that will have more layers of intermediate representations. Currently, it’s just this
concrete syntax tree in the middle.

[00:11:38] JM: What were some of the issues with Java that Kotlin makes alternative decisions

on in its language design? What are the other issues that you’re continuing to improve on?

[00:11:49] AB: Well, there is quite a number of things. One this that we try to mitigate was the
ceremony that Java is famous for. We’re trying to get rid of the things that the user doesn’t really

need to indicate to be understood. I think it’s ideal when the compiler understands everything
that a human can understand. Of course, we can’t there, like computers are a lot dumber than

humans. But we are trying to get there.

An important part here is that if a human struggles understanding something, even if the
compiler can figure it out, the language should not allow this, or at least should resist this. So

we’re trying to make a language where the program is as close to human thought as possible.
Yeah, there we were trying to remove a lot of hoops in between the two. So you don’t have to

have a class to declare a function, for example, in Kotlin for one thing. We have extension
methods that let you minimize the core APIs. There are many more things we use, for example,

in line as a language feature, and we use declarations like variances [inaudible 00:12:55]

© 2018 Software Engineering Daily �6

SED 684 Transcript

variance, which we also support, but it’s like most classes are just variants on the declaration

side.

So there is quite a number of things. Actually, we beautify the collection interfaces. We have
read only and mutable collection interfaces separated so that you can express the [inaudible

00:13:13] in the type system. You can express nullability in the time system, which is one of the
big plagues in the Java world and beyond the Java world actually, which is notoriously called a

billion dollar mistake. Yeah, very many exceptions people collect from Java programs or just null
pointer exceptions. Kotlin helps with that a lot.

Basically, we’re just treating null as a proper citizen in the language as a proper value that can

be expressed in the type system, which makes it usable, because otherwise you’re probably
advised to avoid nulls everywhere across the Java ecosystem, or C++, or whatever other code

style and your business logic you’re supposed to avoid nulls. This is difficult to say the least. But
In Kotlin, you don’t have to. It just works, because the type system captures your intent and

controls everything around dots. So this is just a few things off the top of my head and there is
many, many more.

[SPONSOR MESSAGE]

[00:14:17] JM: Stop wasting engineering time and cycles on fixing security holes way too late in

the software development lifecycle. Start with a secure foundation before coding starts.
ActiveState gives your engineers a way to bake security into your language’s runtime. Ensure

security and compliance at runtime.

A snapshot of information about your application is sent to the active state platform. Package
names, aversions and licenses and the snapshot is sent each time the application is run or a

new package is loaded so that you identify security vulnerabilities and out of date packages and
restrictive licenses such as the GPL or the LPGL license and you identify those things before it

becomes a problem.

You can get more information at activestate.com/sedaily. You want to make sure that your
application is secure and compliant, and ActiveState goes a long way at helping prevent those

© 2018 Software Engineering Daily �7

SED 684 Transcript

kinds of troublesome issues from emerging too late in the software development process. So

check it out at activestate.com/sedaily if you think you might be having issues with security or
compliance.

Thank you to ActiveState for being a new sponsor of Software Engineering Daily.

[INTERVIEW CONTINUED]

[00:15:47] JM: When thinking about some of those things you mentioned, one principle that

comes to mind is Kotlin seems like it was designed to produce less code with the same
expressivity. Maybe you could tell me if that’s right or you could refute it, and perhaps tell me

some of the other language design principles of Kotlin.

[00:16:07] AB: I would say the actual guiding principle that is related to a number of lines of a
file is that we think that reading code is much more important than writing. So we’re trying to

remove as much noise in the code as we can so that it’s as readable as possible. It also causes
the reduction of the code size. Our own measurements and other people reports tell us that it’s

about 20% to 30% reduction in like an average programming in the number of lines. Yeah, the
design principle there is that we are reading a lot more code that we’re writing. So we have to

optimize for readability. That’s one important thing.

There is a lot in the language design that relate to interop all source, like Java interop on the
JVM or JavaScript interop, the JS platform, or interop with [inaudible 00:16:58] in the Kotlin

native backend. So we’re doing a lot of work from the language design standpoint to facilitate
seamless interoperability with a platform.

 
There was actually many more things. We’re trying to make things explicit, where they’re not

obvious, and this is why Kotlin has fewer pleasant conversations between types and some other
languages, for example, and there are many more reasons to do this as well.

Yeah, these are, I guess, the driving principles. Yeah, another one which is – Well, you can call

it design principle, but it’s actually like a major constraint for us. We have to make the language
toolable, because I can come up with a wonderful language that’s very hard to develop tooling

© 2018 Software Engineering Daily �8

SED 684 Transcript

for. We know many examples of this throughout the history, C++ and Scala being very well-

known examples. So we examine our design choices in the view of how the ID will treat this.
How it will increment a compilation will work with this, so on and so forth. Tooling is very

important in our process.

[00:17:58] JM: You mentioned a term there, the interoperability. Can you go into more detail
what you’re talking about there with interoperability?

[00:18:05] AB: Yeah. On a high level, the idea is that one should be able to call into API’s

existing on the platform. For example, if I’m on the JVM, every Java library should be available
to me as a Kotlin programmer. Also, my Kotlin code should expose APIs to the Java world. So if

you write a library in Kotlin, you can very easily expose the API to the Java client so that it can
be used equally well from Java and Kotlin. This is the main idea of the interop. Technically, there

are many interesting questions there, like how do objects behave when they cross the boundary
between Java and Kotlin? For the JVM, it’s trivial. They just don’t change as the same objects.

For other platforms, there can be differences. For example, In JavaScript, Kotlin objects are not

exactly the same as JS objects, but they are largely interchangeable, so on and so forth. There
can be tradeoffs there, but on the JVM, the interop is just transparent. It’s the same objects. It’s

the same types. Basically, you can just call across the boundary without any overhead and
without any ceremony.

[00:19:10] JM: Talk about that in a little more detail. So if I have a JavaScript program and a

Kotlin program and I want to have them interact with an object, are you saying that I might have
to serialize the Kotlin object so the JavaScript program can read it?

[00:19:25] AB: Oh, no. No. So when we compile Kotlin to JavaScript, we can product objects,

make them Kotlin classes. I have a Kotlin class, I instantiate it, I get a JavaScript object. The
question is –

[00:19:35] JM: Sorry. You said when you compile Kotlin to JavaScript.

© 2018 Software Engineering Daily �9

SED 684 Transcript

[00:19:38] AB: To JavaScript, right. Yeah, just for background. Kotlin can compile not only to

JVM. JVM is one of the targets, and then you can compile to JavaScript or to different native
platforms. Not all the same libraries are available across different platform. JDK is not available

on Linux, for example. I mean, when you compile it to a native Linux binary, you don’t have
access to JDK APIs, but languages are the same and the standard libraries are the same.

So when you compile to JavaScript, Kotlin objects created from Kotlin classes won’t be exactly

the same as just native JavaScript objects. They will have more metadata. If I see an object just
deserialize with normal JSON deserializer, it will not have any Kotlin class information. So it will

be just a raw JavaScript object for me. So it’s not exactly the same, but for most purposes,
Kotlin can use native JavaScript objects and JavaScript can use Kotlin objects more or less

transparently.

[00:20:34] JM: Since you mentioned it, let’s go into more detail in the process of being able to
compile Kotlin to JavaScript or compile to other languages. What was the motivation for that for

the ability to compile to languages other than the JVM platform?

[00:20:49] AB: I think the biggest motivation there is the ability to share code, because modern
applications drawn across many platforms. So when I have like a more or less normal project

nowadays, I have a server that’s running possibly JVM, for example, and I have a web client
that’s running JavaScript, and a mobile client running Android, and another client running iOS,

for example, and they all have a lot of overlap in terms of code that’s running there. But they’re
all different platforms. So it’s not easy to share that code. If you write everything in JavaScript,

for example, you can do it, but then you have to do JavaScript as a runtime instead of native
runtime.

Kotlin compiles to native runtimes. In the browser, Kotlin runs in the JavaScript VM. On Android,

Kotlin runs on the Android VM. On iOS, it’s native binary. On the JVM, it’s basically a java
application. But still you can have a common set of source files that’s compiled to all those

platforms at the same time or two of them or whatever pattern you want to share. So this code
can be reused without rewriting it in a different language, or with different dependencies. It can

be just shared unchanged across the platforms. This includes things like business logic, for

© 2018 Software Engineering Daily �10

SED 684 Transcript

example. It’s a use case we’re working hard on now sharing business logic between mobile

applications, writing code for Android and iOS with the same business logic written Kotlin once.

[00:22:17] JM: What are the challenges of implementing that?

[00:22:20] AB: Oh, there are so many. Basically, we have to provide the same semantics on all
platforms, which is I don’t think it is really 100% achievable in a pragmatic case. So if you want

to make it performant and really usable and interoperable on all platforms, there are slight
changes in the semantics, but it has to be similar enough on all platforms for the code to be

actually runnable. Basically, we designed a system where you can have an API exposed to all
platforms. Then behind this API, have different implementations that can call into platform

libraries that are on different platforms.

Then there was lots of issues with how you compile this, how you distribute this, how you deploy
this, so on and so forth. So it’s quite an undertaking. We’re not done there. I mean, we have

experimental support for multiplatform projects, and we’re still working on it, but there is a lot
news every month about it.

[00:23:14] JM: Kotlin has some different types, such as data classes and companion objects

and some other types. Can you talk about some of the different types that Kotlin provides and
why new types were introduced in Kotlin?

[00:23:28] AB: First of all, they’re not types. I think Kotlin only has one kind of types, which is

classes, or interfaces, or objects. They’re all the same. We call them classifiers in Kotlin. But
there are different keywords that can proceed your class declaration, for example. There is data

classes, which are compilers, normal classes actually, but there was this keyword in front at tells
the compiler to generate a bunch of useful things for you as equals and hashcode and to string

and some other convenience methods generated from one liner.

Basically, this is automating very common use case of having a class that holds data and is
manipulated as an aggregate without any fancy logic in it. So that’s for data classes. There’s, for

example, enum classes. It’s the same concept as enums in Java or other languages, the types
of enum. So what else do we have? Companion objects. It’s a different story. We have first class

© 2018 Software Engineering Daily �11

SED 684 Transcript

[inaudible 00:24:28] language. We call them objects, the same as Scala has. An object can be

attached to a class so that its members are accessible in the class main. This is done to get rid
of the idea of static members. Basically, every member is Kotlin is an actual instance member,

not static. Then if you want to call something on a class, it’s an instance member of a
companion object. The benefit is that the companion object can implement interfaces or extend

classes. So there is a lot more code reuse.

Yeah, so this is the companion modifier, and there is I think something – Yeah, there are CO
classes. CO classes are somewhat an extension to the concept of a enum. It’s a closed higher

key where you can have only a given number of subclasses. A CO class always knows all of its
subclasses. So a compiler can do nice checks at the call side when you’re matching, doing

instant soft checks against this higher key. These are just different modifiers that make classes
behave slightly differently for common use cases.

[00:25:30] JM: Kotlin does not have static typing for some of the basic types. Can you go into

that in a little more detail and explain the decision making around dynamic typing versus static
typing?

[00:25:43] AB: So I’m not sure what you refer to as basic type. So Kotlin on the JavaScript

platform has a language extension that’s called dynamic types. So you can have a dynamic
type. It’s a single type in the type system. It’s available only for JavaScript and is needed for

interoperability or the JavaScript world, because the JavaScript world is not expressible in the
rigid object-oriented type system. Basically, we just have a type that says, “I don’t know what

this is. I can call any member on this and we’ll just compile through to a plain JavaScript call and
[inaudible 00:26:17] at runtime. If it works, great. If it doesn’t, then it fails as normal JavaScript

fails.

[00:26:22] JM: Okay. Does Kotlin do anything unusual around type inference? Whether we’re
talking about JavaScript or just regular Kotlin?

[00:26:29] AB: Well, talking about type of inference, I don’t know what to call unusual, because

there is nothing usual. I mean, type inference is a interesting kind of language feature, because
there is a lot of science around type inference, but it’s all largely irrelevant to languages like

© 2018 Software Engineering Daily �12

SED 684 Transcript

Java or Kotlin, because basically we have a different kind of type system from those papers that

are written about type inference. There is just the distinction between nominal type systems and
structural type systems and most papers are written about structural and we’re nominal.

In any case, we’re doing something along the same lines as Java or, in some sense, Scala or

C#. It’s a number of heuristics that help us infer types at the call site. It’s a pretty complicated
algorithm. So there is a lot of different things interacting there. It’s basically witchcraft in terms of

engineering.

In general, there is nothing super unusual. There is nothing so different in Kotlin from other
languages. There are tradeoffs. We took these choices. Some others took other choices, but it’s

all more or less known.

[00:27:34] JM: Okay. Let’s talk a little bit about the tooling. Can you describe the tooling
landscape around Kotlin?

[00:27:39] AB: Yeah, there is quite a bit tooling. So IDE-wise, there is IDE support for IntelliJ

family of products. There is an open source IntelliJ community edition that supports Kotlin JVM>
There is a commercial IntelliJ ultimate that supports JVM and JavaScript. There’s also Android

Studio, which supports Kotlin JVM, and this is how you can write Kotlin for Android. So these
are IDEs that run on the JetBrains platform, IntelliJ. Then there is Eclipse plugin that we also

invest some effort in, has some users. So Kotlin is available in Eclipse.

We used to have a NetBeans plugin as well as a student project. It’s currently not actively
maintained, but it’s open source. So anyone can contribute there. That’s it about IDEs. There’s

also a set of smaller plugins for other lightweights IDEs, like Sublime and I think there’s a theme
integration and so on and so forth.

This is, I think, the most complicated tooling that we have. There’s also integration with those

systems. There is Gradle and Maven plugins, and they are quite powerful. So we have support
for incremental compilation in both Maven and Gradle at this point if I’m not mistaken. Gradle for

sure. Maven, I’m almost sure we do support this already.

© 2018 Software Engineering Daily �13

SED 684 Transcript

Gradle currently has slightly more users in Kotlin, because Android is using Gradle by default

and we have quite a lot of work done to speed things up and so on and so forth. These are the
main tools besides the compiler. Otherwise, it’s mostly relying on existing tools for the

respective platforms. We can reuse all the profiling tools, debuggers, so on and so forth, to work
with Kotlin programs as if they were JVM programs or JS programs or whatever.

[00:29:28] JM: The project, you’ve been involved in since the beginning, and I’ve only heard

like massive growth of Kotlin users. Occasionally, I’ll send out a message on Twitter or in Slack
and I’ll say, “Hey, what kinds of shows do you want to hear about?” I swear, it’s like every time

people want to hear about Kotlin.

Kotlin is clearly growing in popularity. What’s been the biggest challenge that you faced since
the beginning of the project?

[00:29:57] AB: Well, in terms of popularity, really the challenge is – I guess, it’s just staying in

touch with the users, because we are paying a lot of attention to the feedback that users
provide. Well, when the number of users doubles every three months, it’s quite an effort to keep

up with all the reports that we have. Our Slack channel has grown tremendously over the last
year. Still, we’re trying to listen to everybody as much as we can. Of course, the team cannot

answer everybody’s questions anymore. But the community is growing, so people are
answering each other’s questions very well, and I’m very grateful to people being supporting

and helpful on the public channels.

I think keeping in the feedback loop was the biggest challenge related to growth. Then from a
technical standpoint, there is a huge number of challenges, but they are not really related with

the number of users we have. There is also, I think, the issue of diversity, because we now have
users with very different backgrounds, users doing server side, mobile clients, web clients, so

on and so forth. They all have different needs, and we have to balance all those needs and
consider use cases from very different ecosystems. So we don’t have all the expertise in the

room anymore. We have to consult people outside the design team to make sure that what we
come up with works for everybody. That’s now the challenge.

[SPONSOR MESSAGE]

© 2018 Software Engineering Daily �14

SED 684 Transcript

[00:31:24] JM: NNobody becomes a developer to solve bugs. We like to develop software
because we like to be creative. We like to build new things, but debugging is an unavoidable

part of most developers’ lives. So you might as well do it as best as you can. You might as well
debug as efficiently as you can. Now you can drastically cut the time that it takes you to debug.

Rookout rapid production debugging allows developers to track down issues in production

without any additional coding. Any redeployment, you don't have to restart your app. Classic
debuggers can be difficult to set up, and with the debugger, you often aren't testing the code in

a production environment. You're testing it on your own machine or in a staging server.

Rookout lets you debug issues as they are occurring in production. Rookout is modern
debugging. You can insert Rookout non-breaking breakpoints to immediately collect any piece

of data from your live code and pipeline it anywhere. Even if you never thought about it before
or you didn't create instrumentation to collect it, you can insert these nonbreaking breakpoints

on the fly.

Go to rook out.com/sedaily to start a free trial and see how Rookout works. See how much
debugging time you can save with this futuristic debugging tool. Rookout integrates with modern

tools like Slack, Datadog, Sentry and New Relic.

Try the debugger of the future, try Rookout at @rookout.com/sedaily. That’s R-O-O-K-O-U-
T.com/sedaily. Thanks to Rookout for being a new sponsor of Software Engineering Daily.

[INTERVIEW CONTINUED]

[00:33:29] JM: I did a show recently with somebody about Kubernetes, and one of the things he

was saying was that in order to reduce the scope, because Kubernetes has such a big surface
area of different people that want to use it for radically different applications, and it sounds like

with Kotlin, it’s kind of the same thing. Do you have to scope your concerns to something narrow
that you can actually accomplish? For example, in the early days of Kubernetes, when it was

starting to catch on and people really liked it, there were all these different use cases and they
were like, “Okay, we need to focus.” So we’re going to just focus on scenarios with three nodes,

© 2018 Software Engineering Daily �15

SED 684 Transcript

three or more nodes. Let’s just get that to baseline stability and then maybe we’ll do something

like multiple regions and we’ll make sure that we can support everything within multiple regions.
While we’re focused on those things, maybe we won’t p ay as much attention to all of the other

use cases that have plenty of constituents, but they’re just a little bit lower order bits.” Do you
have to make tradeoff in the surface area of concerns that you’re focused on?

[00:34:35] AB: Well, time-wise, we do. We write, because we can’t work on all issues at the

same time. So we have to pick what we’re working on today and work on something else
tomorrow. In terms of fixing bugs, we can actually do a round robin, like, “Oh, after the bugs in

this area and that area and work in stability issues across the entire language during a release
cycle.”

In terms of language features, you can’t cater to everybody in a single release. So we focus

most of our efforts on a single thing that seems to be helping as many people as we can. Then
next time we focus on something else.

[00:35:13] JM: Are there any features that you wish were in Kotlin today but are currently not?

Things that are perhaps on the roadmap?

[00:35:20] AB: I think everything I wish we had is on the roadmap, but some things are quite
distant on the roadmap. For example, I would really love to have immutable data in Kotlin as

first class describable in the type system, but currently we were not close to that. Immutable
data is very important. Well, for philosophical reasons that also is a functional feature in a

sense.

For practical reasons, it’s very important for multi-threaded scenarios, because immutable
objects can be shared without any precautions. It’s basically safe to access them from different

threads. It would be a great compliment to our core team story. Kotlin introduced core teams
about two years ago, and we actually have a very good story there. Asynchronous programing

is getting a lot easier with this feature. But it’s still running over a multi-threaded environment.
 

Well-behaved programs can avoid any issues with sharing of mutable state, because [inaudible
00:36:24] make sure that safe publication happens on every passing from core team to another.

© 2018 Software Engineering Daily �16

SED 684 Transcript

But still, you can have a global or something like this shared inadvertently and have issues

there. I would really love to have immutable data. We’re making interesting steps in this
direction in Kotlin native. So it will be our experiment with the memory model. We’ll see how it

works out.

Another thing would be to support data science and big data use cases much better than we do
now. There we have some actual plans. So it will be hopefully addressed in the next couple of

years. Yeah, we have pretty many plans and these are just things that are easily explainable in
a minute, then there are slightly more involved things about the type system that probably not

be able to explain well at a blackboard.

[00:37:14] JM: Let’s go through some of the ones you did mentioned. Immutable data, I thought
Java objects were immutable by default. What do you mean by immutable data?

[00:37:23] AB: Java objects are not immutable by default. Java objects can have mutable

fields. So if you have a normal field in an object, anywhere in Java, you can mutate it at any
point and the access by default not synchronized in any way. You have to take care of

synchronization and publication of such changes from one thread to another. On one hand, it
enables a lot of use cases with high performance applications. On the other hand, it requires a

lot of skill, and it’s very difficult to debug and profile and so on and so forth.

So multithreaded programming in Java is a very difficult art. There are techniques to make it
easier. One of them is deliberately make all your data immutable, which is not always feasible

and not always easy, because the language itself neither Java nor Kotlin supports it fully as a
first class citizen as Kotlin promotes immutability. Many thing in Kotlin are immutable just

because this is the convention to make them. But we don’t have any features in the language
that help you track what’s mutable and what’s not. Once we design all these and make

immutability a feature of the language, it will be a lot easier to make a safe multithreaded
programs works smoothly without any issues.

[00:38:41] JM: The data science topic as well I thought was interesting. You mentioned that

you’d like to make Kotlin support data science workloads better. Why doesn’t it support data
science workloads today?

© 2018 Software Engineering Daily �17

SED 684 Transcript

[00:38:52] AB: In terms of workloads, I think it support them. But question is how can
convenient the language is and how familiar the APIs would be for data science scenarios.

There is quite a lot of existing libraries that are used by data scientists, and they’re using
mathematical and other language constructs. They’re not available in Kotlin at the moment.

Some example are creating collections in certain ways using slicing syntax for arrays and lists,
so on and so forth.

There are seemingly small things in the language that can make the data science experience

much better. So you can now do data science in Kotlin, and some people do it, and there are
libraries and so on and so forth. To attract many people from this field, we have to make it a lot

more accessible, a lot more a familiar. It’s largely a question of familiarity and largely a question
of the power of the DSL story in Kotlin. So basically want to enable the domain-specific

language making in Kotlin for data science like scenarios.

[00:39:55] JM: You touched on Kotlin native. That’s something we have not covered. Can you
explain what Kotlin native is?

[00:40:01] AB: Kotlin native is one of our compiler backends, basically. It’s a part of the Kotlin

project that allows you to compile Kotlin sources to native binaries on different platforms, and it
supports Linux, MacOS, Windows, iPhone, so on and so forth. Basically, it’s a pretty small

language runtime and the compiler is using the LLVM toolchain that’s used by modern C and C+
+ compilers to produce a native binary that’s reasonably small and runs fast.

[00:40:31] JM: How does the performance of that binary compare to when it runs on – I guess

it’s just totally a different story than the JVM, because in JVM you’ve got all these overhead of
garbage collection and like hotspot runtime management, and I guess you just don’t have that if

you do the web assembly route.

[00:40:50] AB: Yeah. If you just go over the native binary, you don’t have – First of all, you don’t
have the startup cost of the JVM. So JVM applications can be very, very fast when they have

warmed up. But at the very beginning, they have to startup. The entire hotspot infrastructure

© 2018 Software Engineering Daily �18

SED 684 Transcript

have to startup and this makes them really slow in the very beginning. A native binary just runs

instantly. That’s one thing.

In the native binary, you have less of the memory overhead theoretically. It also depends on the
workload very much. Like in server workloads, there are many scenarios where dynamic

optimizations of a hotspot-like VM can be a lot more efficient than any ahead of time compile
program. But other scenarios ahead of time will be faster.

So it’s largely a tradeoff, but the important part is that a native binary is runnable, where the

JVM is not available. In an iPhone, for example, there’s just no JVM at all that would perform
reasonably well for a real application to run.

I would say the main thing about Kotlin native is availability on different platforms. The startup

time is definitely better than a heavy VM. Then the runtime performance, currently we have an
experimental compiler that is not doing many optimizations that it will do one day. Currently, I

think we are slower than many other compilers. The code that we generate is slower than many
other production compiler generate. But this is just a matter of work. Overtime, it will get a lot

faster than it is now.

[00:42:23] JM: WE did a show a while ago about a topic called GraalVM. Have you heard of
GraalVM?

[00:42:29] AB: Oh, yeah. I did.

[00:42:30] JM: I think GraalVM is some additions to the – If I recall, it’s additions to the JVM

that make it run more effectively by doing some improvements around object management, and
I don’t recall many other details right now. But have you looked seriously at it? Do you know

how it might impact Kotlin?

[00:42:51] AB: I haven’t looked too closely at it, but I think I have a general idea of what it is. So
Graal can run a lot for Java programs and JVM programs. So it can run a lot of Kotlin programs

as well. Some cases involve making them faster, which is great. It’s also good at compiling
things ahead of time. So if people care about startup time, it’s another way of getting native

© 2018 Software Engineering Daily �19

SED 684 Transcript

binary from a Kotlin program. It’s somewhat different from how Kotlin native does that. But still

it’s available there. So I think it’s a great addition to the JVM ecosystem, and there are many
interesting use cases for it.

[00:43:25] JM: As we begin to wrap up, I guess it’d like to get a perspective on the development

of Kotlin. How big is the dedicated Kotlin team at JetBrains, or is there a team?

[00:43:37] AB: Yeah, there is.

[00:43:37] JM: There is a team. Okay. How big is that team? How does it interact with the open
source community?

[00:43:42] AB: We have about 50 people working at Kotlin at the moment. It’s fulltime

developers and QA people and marketing, so on and so forth, but mostly developers. We have
an open source on GitHub. We get quite a few contributions every month. Every release we

publish has some of the poll requests integrated. The community is helping and we get a lot of
feedback from our users through our issue tracker or other public channels. I think our

interaction with the open source community has been very, very helpful over this time.

[00:44:16] JM: Does JetBrains see a business opportunity in the Kotlin investment, or is it
unclear at this point?

[00:44:24] AB: I would say it’s pretty clear. I mean, some of the opportunities are pretty clear

and already working out. So Kotlin was initially thought of as – First of all, of course, a boost to
our own productivity. Many projects in JetBrains are now written in Kotlin. Some of them even

written in Kotlin from scratch. This is definitely an enabler for many things that we’re doing now,
which is definitely a business benefit.

Also, Kotlin is a huge boost to the brand awareness. So many more people know JetBrains now

because of Kotlin, and it’s also working great for selling our commercial products to people in
many interfaces. These are like the obvious things that we indirectly monetize Kotlin through.

Then we’ll be working on commercial tooling for Kotlin, and Kotlin native already has some early
access versions of commercial tooling for it.

© 2018 Software Engineering Daily �20

SED 684 Transcript

So, yeah, it’s our business to help programmer be more productive through great IDs, and Kotlin
is just another market that we basically created ourselves. Now we have this market to cater to

and we can sell our software there. That’s it. The language itself is open source and the basic
tooling for it is open source, and we’ll always be open source. Then there are so many added

value, like things that we can provide in the market and make money on it.

[00:45:41] JM: Okay. Well, Andrey, are there any future plans and development for Kotlin that
you want to mention?

[00:45:47] AB: There are many plans. I have mentioned some already. We’ll be releasing 1.3

soon enough with core teams and the new version of multiplatform project support and it will be
quite an exciting release. Just stay tuned for it. Then we’ll be working on many more things,

including making the ecosystem more uniform with the better compiler API. So we want different
platforms to have same access to the Kotlin compiler and leverage things like transforming

Kotlin code for tooling purposes. There will be quite a few things happening over the next year
or two.

[00:46:20] JM: Sounds good. Well, Andrey Breslav, thank you for coming on Software

Engineering Daily. It’s been great talking to you.

[00:46:24] AB: Thank you very much. Great questions.

[END Of INTERVIEW]

[00:46:29] JM: DigitalOcean is a reliable, easy to use cloud provider. I’ve used DigitalOcean for
years whenever I want to get an application off the ground quickly, and I’ve always loved the

focus on user experience, the great documentation and the simple user interface. More and
more people are finding out about DigitalOcean and realizing that DigitalOcean is perfect for

their application workloads.

This year, DigitalOcean is making that even easier with new node types. A $15 flexible droplet
that can mix and match different configurations of CPU and RAM to get the perfect amount of

© 2018 Software Engineering Daily �21

SED 684 Transcript

resources for your application. There are also CPU optimized droplets, perfect for highly active

frontend servers or CICD workloads, and running on the cloud can get expensive, which is why
DigitalOcean makes it easy to choose the right size instance. The prices on standard instances

have gone down too. You can check out all their new deals by going to do.co/sedaily, and as a
bonus to our listeners, you will get $100 in credit to use over 60 days. That’s a lot of money to

experiment with. You can make a hundred dollars go pretty far on DigitalOcean. You can use the
credit for hosting, or infrastructure, and that includes load balancers, object storage.

DigitalOcean Spaces is a great new product that provides object storage, of course,
computation.

Get your free $100 credit at do.co/sedaily, and thanks to DigitalOcean for being a sponsor. The

cofounder of DigitalOcean, Moisey Uretsky, was one of the first people I interviewed, and his
interview was really inspirational for me. So I’ve always thought of DigitalOcean as a pretty

inspirational company. So thank you, DigitalOcean.

[END]

© 2018 Software Engineering Daily �22

