
SED 602 Transcript

EPISODE 602

[INTRODUCTION]

[0:00:00.3] JM: A database stores data to an underlying section of storage. If you are an

application developer, you might think of your persistent storage system as being the database
itself. But at a lower level, that database is writing to block storage, or file storage, or object

storage. A container orchestration system manages application containers.

If you want to run WordPress, a blogging platform in a container in Kubernetes, that means you
also need a database to store your blog posts in a persistent way. To run a database, you need

to have an underlying storage medium, which could be a disk that is on your on prem data
center. It could also be block storage on disk at a cloud provider.

Kubernetes is not the only container orchestrator. There’s also Cloud Foundry, there’s Mesos,

there’s Docker Swarm, several others. Each of these container orchestrator needs to be able to
run a variety of persistent workloads such as a MySQL database or a Kafka cluster. Each of

these persistent workloads needs to be able to use different types of backing storage.

With the range of container orchestrators and the range of backing storage types, you get a
problem. Every storage type would have to write custom code to connect to each container

orchestrator. It’s an end-to-end problem. The solution to this is the CSI, the container storage
interface. The CSI is a common interface layer between the container orchestrator and the

backing storage system.

In today’s episode, Jie Yu from Mesosphere describes the motivation for the CSI and gives an
overview for its design principles. There are some great lessons here for anyone working with

containers or distributed systems in general, and if you’re a little bit confused about what the
CSI is right now, don’t worry, we get into it in this episode. We explain it in great detail.

 
Before we get to today’s episode, I want to just announce that we’re looking for writers for

Software Engineering Daily. So if you’re interested in writing, send me an email to
write@softwareengineeringdaily.com . We want to bring in some new voices. We want to deliver

© 2018 Software Engineering Daily �1

SED 602 Transcript

high quality content about software that will stand the test of time, and the container

orchestration details of Kubernetes and the container storage interface. This is a perfect
example of something that has not been written about much relative to how interesting a topic it

is. So if you have something niche, something interesting, something technical that you want to
write about, go to softwareengineeringdaily.com/write. Find out more. I’d love to hear from you.

We’re looking for part-time and full-time software journalists and also volunteer contributors who
just want to write about software engineering. We want to explain technical concepts. We want

to tell the untold stories of the software world, and we’d love to hear from you. So send me an
email or go to softwareengineeringdaily.com/write.

[SPONSOR MESSAGE]

[0:03:11.0] JM: Citus Data can scale your PostgreS database horizontally. For many of you,

your PostgreS database is the heart of your application. You chose PostgreS because you trust
it. After all, PostgreS is battle tested, trustworthy database software, but are you spending more

and more time dealing with scalability issues? Citus distributes your data and your queries
across multiple nodes. Are your queries getting slow? Citus can parallelize your SQL queries

across multiple nodes dramatically speeding them up and giving you much lower latency.

Are you worried about hitting the limits of single node PostgreS and not being able to grow your
app or having to spend your time on database infrastructure instead of creating new features for

you application? Available as open source as a database as a service and as enterprise
software, Citus makes it simple to shard PostgreS. Go to citusdata.com/sedaily to learn more

about how Citus transforms PostgreS into a distributed database. That's citusdata.com/sedaily.
Citusdata.com/sedaily.

Get back the time that you're spending on database operations. Companies like Algolia,

Prosperworks and Cisco are all using Citus so they no longer have to worry about scaling their
database. Try it yourself at citusdata.com/sedaily. That's citusdata.com/sedaily. Thank you to

Citus Data for being a sponsor of Software Engineering Daily.

[INTERVIEW]

© 2018 Software Engineering Daily �2

SED 602 Transcript

[0:04:55.8] JM: Jie Yu is an engineer with Mesosphere and he works on the container storage

interface. Jie, welcome to Software Engineering Daily.

[0:05:02.9] JY: Thanks. Thanks, Jeff.

[0:05:04.4] JM: I want to talk about storage on container orchestration systems, connecting
these two pieces together. I think we should start with a simple example. So if I’m running a

container orchestration system, it’s probably doing a variety of things. It’s helping me run my
different applications. One simple application that requires storage is WordPress. WordPress is

a blogging platform with a database involved. I need to be able to read and write to that
database. What do I need out of my underlying storage system if I want to be able to run

WordPress on a container orchestrator, like Kubernetes or Cloud Foundry?

[0:05:46.1] JY: Yeah. Typically, for those applications, you have the stateful part and the
stateless part. By stateless part, I mean the application like from the web server and the

application business logic that has nothing to do with any state, and the stateful part usually
means you have a database or some storage system [inaudible 0:06:04.6] that it can store your

state because most of application do require some state. So in this particular case, for
WordPress, the stateless part is probably like a web server and the stateful part is probably like

a database like a MySQL. Basically you’re asking like how do I run MySQL on a container
orchestration system like Kubernetes.

Typically, for those databases, they need a file system they can write their data to or [inaudible

0:06:30.5] device they can write their data to. So the underlying container orchestration system
needs to provide primitive allowing a database application to write those data to.

[0:06:40.8] JM: So many people think of their database as their backend, but a database is in

some ways an application. It’s an application that is backed by a more primitive storage
element. Help to clarify this – If I have a MySQL database that WordPress is running on top of,

what are the different underlying storage mediums that could be underlying that database?

[0:07:09.3] JY: Typically, the database use operating system APIs to talk to the storage
systems. So that API is POSIX API, like read, write, those fsync, those kind of storage POSIX

© 2018 Software Engineering Daily �3

SED 602 Transcript

APIs, and operating systems like Linux usually provide different device drivers in the file system

APIs to allow those application like MySQL to write their data to. Underneath is the device driver
that actually back those file systems cause, like read and write and you can’t have different type

of device drivers that back those file system API calls, and a device driver can – It is basically a
very vendor specific thing. For example, if you have a spindle disk, you have some special

device driver for that, and if you have something like EBS or some remote storage [inaudible
0:08:00.4] you have a special device driver for that.

[0:08:03.8] JM: These remote storage backing systems, like Amazon Elastic Block Storage, or

Google Persistent Disk, do these necessarily exist on the same physical machine or in the same
physical data center as your compute node that the container orchestration system is running

on?

[0:08:29.3] JY: Not necessarily, especially for EBS and gcePD, they’re remote. They’re not at all
called to the node and I don’t know if they’re in a same datacenter or not. There are some

restriction on EBS, for example, that it can only access in EBS volume the same zone as the
volume.

[0:08:45.9] JM: To clarify, you could have a WordPress blogging platform with a MySQL

database that underlies that WordPress instance and the MySQL database application would be
running on your Kubernetes node as essentially an application that’s running there, the

database application, and the backing storage, the Amazon EBS, for example, might be in a
different data center. So there might be a network connection that your overall system needs to

go over in order to complete a write to your database. Is that correct?

[0:09:27.1] JY: Yes, that’s correct.

[0:09:28.8] JM: Okay. So the reason I layout this example is just to give a perspective that there
is a lot of complexity and distribution of systems in how the backing storage systems can be

interfacing with your container orchestration system. So in the cloud native ecosystem, we have
these container orchestrators. We have Kubernetes, Cloud Foundry, Mesos, and then we have

this variety of storage vendors. We have Amazon EBS, like we mentioned, Google Persistent
Disk, NetApp. There are some other legacy storage vendors. How have the variety of container

© 2018 Software Engineering Daily �4

SED 602 Transcript

orchestrators and the variety of storage types, how have these communicated in the past?

Because we’ve had Cloud Foundry for a while. We’ve had Mesos for a while at this point. We’ve
had Kubernetes for several years. In these years leading up to the present, how have the

container orchestrators and the storage systems communicated?

[0:10:27.2] JY: Typically, before CSI was introduced, I think each different container
orchestration system like Kubernetes, Cloud Foundry, Mesos, they all have their own interface

internally that the vendor has to implement so that the CO, container orchestration system, can
talk to those vendor during the lifecycle of volume. For example, Kubernetes, they have flex

volume and also the in-tree volume driver so that as a storage vendor, like I’m a NetApp, I can
either write a flex volume base implementation to connect to Kubernetes. I can write an in-tree

volume driver for that. So that’s for Kubernetes.

For Docker, Mesos, Cloud Foundry, actually, all these three are previously using this interface
called Docker Volume Driver Interface and called DVDI. So that’s an interface that’s kind of

internal to Docker, but since Docker is so popular, then those two other container orchestration
system decide to use that to talk to the underlying storage vendor through that interface.

[0:11:22.4] JM: So I have a container on Kubernetes, for example. I want to be able to write

data from my application container to a persistent storage type. There are many different
storage types that I could be writing data to. How does the container know how to connect to all

these different storage types?

[0:11:43.9] JY: So from user’s perspective, these are the details that’s not exposed to the user.
If you’re a Kubernetes user that you want to use MySQL and want to run MySQL on top of

Kubernetes, what you should care about is not underline which vendor you pick all these kind of
stuff. You only pick which storage class you need, and Kubernetes has this internal mapping

from each storage class to an actual vendor specific parameters and configuration for the
storage system. Storage class is like basically like streams, like fast, medium, slow, just a name

for a class of storage, and Kubernetes internally map that to a bunch of parameters, and then
Kubernetes internally will actually on top to the corresponding vendor through that interface

either in-tree or flex volume, now this CSI is being introduced, so there’s another way to talk to
those vendors through the CSI interface right now.

© 2018 Software Engineering Daily �5

SED 602 Transcript

Through that interface, Kubernetes will drive from the storage specific operation, like creating
the volume, or attach the volume, or mount the volume inside this.

[0:12:42.8] JM: Define that term volume. What is a Kubernetes volume?

[0:12:48.0] JY: You can think of volume is a file system that’s mounted somewhere in the

container that the application can write their data to using the POSIX API I mentioned earlier,
like the read, write, the Linux systems calls. The data will be actually persisted as long as the

volume object exists.

[0:13:06.3] JM: That persistence, the mechanism by which data is persisted will actually
depend on what the storage medium that is backing the volume is, correct?

[0:13:15.9] JY: Right.

[0:13:16.6] JM: Now, does the idea of a volume exist in other container orchestrators talking

about Docker Swarm or Cloud Foundry?

[0:13:25.9] JY: Yeah. Docker has Docker volume, which is essentially similar to Kubernetes
volume. I think the semantics are very similar because all of them are a file system that’s

mounted somewhere in the container that you can talk to using POSIX APIs. Yeah, Docker has
Docker volume. Cloud Foundry, I’m not so familiar with. Mesos, you have this concept [inaudible

0:13:47.7], which is exactly the same semantics as Kubernetes volume.

[0:13:52.1] JM: Container orchestrators have historically exposed a pluggable storage interface
and all of the storage providers have had to adapt to those unique interfaces. Every container

orchestrator has their own – Historically has had their own storage interface and all the
providers have had to adapt to whatever that interface is. Given an instance, like Amazon EBS

would have to Cloud Foundry, and then they would also have to adapt to Kubernetes. So they
would have to make multiple plug and play systems for different interfaces. Why is that

problematic?

© 2018 Software Engineering Daily �6

SED 602 Transcript

[0:14:31.5] JY: So I think there is a survey. I remember there is a survey a long time ago that

the CNCF guys did, like basically for example for just EBS, there are like five plugins out there
that they built to adapt to different container orchestration systems. That’s just for EBS. For

other vendors it’s probably the same thing. So it’s very painful for vendor, because they’re
building some software and then they have to adapt to every single container orchestration

system, and it is a moving target, because there might be new container orchestration system
being introduced. So it’s really painful to maintain all of these.

Now that you have this problem, once you build in electric appliances, you have to adapt to

different type of electronic outlet standards, which is very painful because when you travel, you
have to bring those adapters. It’s most painful for vendor, eventually painful for customers and

also operators because they need to operate all these vendors and they have to find the right
interface to use when they deploy different container orchestration systems.

[0:15:33.9] JM: I think we’ve outlined the problem here. You’ve got different container

orchestration systems, Cloud Foundry, Mesos, Kubernetes, Docker Swarm. There’s several
others, but that’s just four already. Then you’ve got different storage providers. You’ve got

Amazon EBS, you got Google Cloud Persistent Disk. You’ve got NetApp. You have PortWorks.
You have all these different storage systems. If there was not some common way for container

orchestration systems and storage systems to communicate, you have an end-by-end problem.
If you had four container orchestrators and four storage systems, you would have to have 16

interfaces between them.

So the CSI, the container storage interface is an opportunity to connect those two classes of
systems, container orchestration systems and storage systems in a unified fashion. Tell me

some of the high level design principles behind the CSI.

[0:16:35.7] JY: Yeah. I think the project has started when – I mean, I think we saw a bunch of
successful example, previous examples especially now in the storage area, in the now working

area initially that the container network interface is a good example of such an interface that
bring the container orchestration systems and network vendor together and that turns out to be

very successful, and that’s the reason we kind of started the CSI project and we have a bunch
of conversation with folks in different container orchestration systems. And the first thing we do

© 2018 Software Engineering Daily �7

SED 602 Transcript

actually initially was try to look into existing interfaces that people have already. For example,

Docker volume driver interfaces and the flex volume interface, or even the in-tree driver in
Kubernetes and we found a bunch of problem there. I mean, there’s a bunch of problem

[inaudible 0:17:22.7] those problem right now, which I think some of the interface is CLI-based.
For example, flex volume. By CLI-based, I mean that the container orchestration system when

there’s a volume to be attached, you will invoke a CLI binary to actually attach that volume and
the storage vendor will provide an implantation of that binary.

But the problem for that is it’s really hard to maintain CLI dependencies and think about deploy

all the dependency of your CLI on a single box. It’s really painful. I used to work at Twitter and I
know the tool that we use at the time to deploy such dependency is like puppet, which is super

slow and also error-prone and it’s very hard to deploy those kind of stuff. That’s what containers
are meant for. I think some of the interface as CLI-based is not ideal. Some of the interface like

Docker Volume Driver interface is problematic because the lack of the item potency. What I
mean is in a distributed system, when you talk to some – When a system A talk to system B and

the interface within system A, system B if it’s not item potent. What that means is you issue two
– The same request twice to the same system as you resolve the same thing, but if that’s not

the case, it’s very hard to make it correct especially in the failure scenarios.

Actually, there was a blog post from Stripe engineer at the time writing about in a distributed
system you have to design your API always to be item potent. DVDI, Docker volume driver

interface, the interface is not item potent, make it really hard to deal with those failure scenarios.
Some of the interface that we looked at, for example, the Kubernetes in-tree volume driver, I

think at a time they kind of want to get rid of that because I think it create such a burden for
especially during the release cycle where everyone wants to jam into – Well, want to have some

patch into the Kubernetes core, and it’s very hard to core in the release.

Also like after the Kubernetes has been released, whenever there’s a bug in a driver, you have
to wait for the next Kubernetes release, which is pretty long. It’s not ideal for Kubernetes

community and also not ideal for the storage vendor and they want to fix that.

Basically, these are the problems we solved from the existing interface and we don’t see –
There’s no solution right now at a time that we can fix all the issues. So we decide to start this

© 2018 Software Engineering Daily �8

SED 602 Transcript

project with the design principle to solve all these issues that we mentioned earlier, like it should

not be a CLI-based interface because the dependency management is going to be hard. The
API should be item potent so that it’s easier to handle those failure scenarios and it should

probably not be in-tree interface. It has to be out of tree so that the release cycle can be
controlled.

[SPONSOR MESSAGE]

[0:20:08.6] JM: Nobody becomes a develop to solve bugs. We like to develop software

because we like to be creative. We like to build new things. But debugging is an unavoidable
part of most developer’s lives. So you might as well do it as best as you can. You might as well

debug as efficiently as you can, and now you can drastically cut the time that it takes you to
debug.

Rookout rapid production debugging allows developers to track down issues in production

without any additional coding, any redeployment, you don’t have to restart your app. Classic
debuggers can be difficult to set up, and with a debugger, you often aren’t testing the code in a

production environment. You’re testing it on your own machine or in a staging server.

Rookout lets you debug issues as they are occurring in production. Rookout is modern
debugging. You can insert Rookout non-breaking breakpoints to immediately collect any piece

of data from your live code and pipeline it anywhere. Even if you never thought about it before
or you didn’t create instrumentation to collect it, you can insert these non-breaking breakpoints

on-the-fly.

Go to rookout.com/sedaily to start a free trial and see how Rookout works. See how much
debugging time you can save with this futuristic debugging tool. Rookout integrates with modern

tools, like Slack, Datadog, Sentry and New Relic.

Try the debugger of the future, try Rookout at rookout.com/sedaily. That’s R-O-O-K-O-U-T.com/
sedaily. Thanks to Rookout for being a new sponsor of Software Engineering Daily.

[INTERVIEW CONTINUED]

© 2018 Software Engineering Daily �9

SED 602 Transcript

[0:22:12.6] JM: We’ll go through some of those topics of discussion. Let’s start with the in-tree.
S in-tree refers to the tree of the source code. So an in-tree solution would mean that you would

have driver code for all of these different storage systems in the source code for your container
orchestrator. So the container orchestrator source code would have to contain specific code for

servicing storage requests to EBS and other source code for managing Google persistent disk,
another source code for PortWorks, and that’s problematic because every time a storage

system would come out, you would have to add in blocks of code in Kubernetes itself that would
say, “Yeah, new storage system came out, like google magical store, and we need to be

compliant with that.” Instead you go with the out of tree solution. Give a little more color on in-
tree versus out of tree solutions.

[0:23:12.5] JY: Yeah. In-tree as you mentioned, the source code of the vendor code is actually

part of the container orchestration system. Typically, that means that those color will be running
in the same Linux process, OS process as the CO, container orchestration system. But the

problem for that is, first of all, the release cycle. As I mentioned, the release cycle is tied
together, which is not ideal. The second thing about the issue is the security, for example,

because your code is actually running in a same OS process as the CO. You have the same
privilege as the CO, but the CO itself is not actually written by CO. It’s written by storage vendor

and there needs to be a trust between CO and those storage vendors CO, but it’s really hard to
achieve that. So then that calls some of the security issues.

By out of tree is the storage plugin will actually be running in a different – First of all, out of tree

means the CO itself for the storage vendor is actually in a different repo than the container
orchestration system’s code. So usually if that’s the case, it typically means that the CO itself

will be running a separate OS process as the CO, because I think if they are running in the
same OS process, the only way you can do that is through dynamic linking, which is not

portable across multiple languages. [inaudible 0:24:26.4] we want to achieve is like because
Kubernetes is written in Go, Mesos is written in C++ and Docker is written in GO. So we want to

deal with all different languages. We don’t want to tie to a particular language. Dynamic linking
is not an option for us.

© 2018 Software Engineering Daily �10

SED 602 Transcript

So what we mean out of tree is always mean like it’s out of process too. So the plugin itself is

running in a separate process and container orchestration system will talk to those plugin
process through some APIs to make those modern cycle, volume lifecycle calls, like attach

volume, create volume.

[0:24:58.2] JM: There’s a question here, where the code should be. The code for the container
storage interface, you put it in the control plane only, not the data plane. Describe this in more

detail. What is the control plane? What does that mean specifically and why is the CSI code
localized to the control plane versus the data plane?

[0:25:22.5] JY: Yeah. So control plane and data plane, as far as I know, it’s kind of borrow from

the networking terminology, because that used to be the term in a networking area, where a
control plane means it control where the package go, but didn’t dictate how the package flow

through on the network. For example, like routing, like when you have a package, you decide
where the package should go. That’s control plane operations. But how the package actually

flow into a different host or different router, that’s data plane issues. It’s not control plane.

So map that to storage, control plane means like how those volume are actually being set up
and connected to the CO. In data plane, in storage, it actually means like how these data

actually flows. For example, through [inaudible 0:26:05.4] protocol flow through like fiber
channel or like some TCP/IP based protocol for those storage actual data to flow from one host

to a different host from container orchestration systems through the storage vendor. We don’t try
to define that protocol. We only want to define the protocol where specify how the volume

should be connected. How do we setup the volume? How do we mount the volume? We don’t
care about how the volume data will go and how that should go.

[0:26:31.9] JM: It’s been really important for the CSI to be vendor neutral, and this is part of

Kubernetes drawing on lessons from past open source systems where there were vendor wars
over control over certain areas of the storage systems. I’m not sure exactly which open source

systems, and I probably shouldn’t even name names, but there have been open source projects
in the past where vendors have gotten involved to much in specifications that should have been

non-vendor specific. Because of that, the whole ecosystem can get contaminated with these
tribalistic business interests.

© 2018 Software Engineering Daily �11

SED 602 Transcript

 

Vendor neutrality, how do you – I think, first of all, why wouldn’t be this vendor neutral? What is
the difficulty in making your container storage interface vendor neutral? How would you

potentially favor a vendor and how do you avoid that?

[0:27:37.7] JY: Well, I think by vendor neutral, I think basically for the specification itself, no
vendor can actually dictate the direction of the spec. As you said, that usually means like if we

have some vendor that have a control on the specification, they will put some of the vendor
specific features or proprietary features into the spec, because vendors always competing with

each other to have some proprietary feature. They want to be shiny in the CO systems, and if
we let one vendor control that thing, then most likely that the spec will favor one particular

vendor and will kind of be causing issue for other vendors.

What we did actually trying to avoid the interesting way for this CSI project specifically is we say
that only container orchestration system, community members, representative can be approver

for that spec so that if folks aren’t CO’s perspective and don’t allow any storage vendor to be an
approver for this spec, so that we avoid this issue, like having one vendor control the spec.

Things, like container orchestration system from their perspective, it wants to be vendor neutral,
because it wants to work with any vendor, any storage vendor. I think the goal is aligned. So I

think that model will make it easier for us to make the spec vendor neutral and that’s actually
what we did.

[0:28:54.7] JM: There’s a number of design questions around building this container storage

interface’s distributed systems design questions and software architecture design questions.
The CSI, it could work through a CLI, command line interface or it could work through a long-

running service. So you could have the storage vendor have to deploy a binary on a host in
order to be executed to a CLI. In that situation, the container orchestrator would invoke the

binary and that would allow the container orchestrator to connect to the storage system. Then
alternatively, the service model, the container orchestration vendor would deploy a service on

the host, and then the orchestrator would make requests to the service and then the service
would broker the connection between the container orchestrator and the storage system. Why is

this an important question? How did these two approaches to connecting a storage system to a
container orchestrator. How do these two approaches contrast?

© 2018 Software Engineering Daily �12

SED 602 Transcript

[0:30:06.5] JY: Yeah. I think I kind of briefly mentioned that the design goal that we want to
achieve and we’re looking to existing interface at a time and most of the interface actually is CLI

based. For example, the flex volume is CLI based. On the CNI, the container network interface
is a CLI based interface and we have this debate whether we should go with service versus CLI.

I think that the main complain that people have with a CLI based interface is it’s super hard to
deploy compared to a service which you can just use a container. That’s the reason container

orchestrations exist, deploy containers. It’s much easier to do that with one service than deploy
CLIs.

I think the other problem is, I think, if a CLI based binary, if you call the CLI interface, usually the

CLI binary require will access to do things, and it’s not very safe to allow an arbitrary binary
that’s written by the vendor to do that. By running a service, you can use many of these

container primitive, like Linux capabilities or [inaudible 0:31:07.9] user and give grants and
additional capabilities to kind of restrict that access.

Also, I think CLI, like the dependency management, these are kind of related to the deploy issue

where the dependency of the CLI is hard to deploy, because there’s not really an easy way to
deploy those binaries. The only way I can think of right now is using those like [inaudible

0:31:27.2], Ansible, those kind of stuff to deploy their CLI binary dependencies, which is not
easy to upgrade or maintain.

Also, I think specifically for storage compared to networking. The storage has one unique

requirement, which is there are some search and file system called fuse where the file system
itself is running in the user land, not in the kernel space. For field space backends, things like

S3FS, those kind of fuse based backend, it will require a long running process anyway.
Basically, the long running process is the one that’s serving those file system API calls. The long

running service – If the long running service is down, the file system is down.

For storage specifically, we have this requirement that some of the backend require a long
running service anyway. I think in that case, a service makes more sense because then you can

just jam all these dependency into one single container including the plugin interface as well as
these long running services for fuse backend. That makes the decision much easier – I mean, I

© 2018 Software Engineering Daily �13

SED 602 Transcript

think that’s a pretty natural decision that would go with service, because all these kind of issues

with CLI and also there are some special requirement for storage to have a long running service
running.

[0:32:33.2] JM: You talked earlier about the item potency question. So all API calls between the

container orchestrator and the storage system, the storage system that you’re interfacing with.
All these calls should be item potent, and item potency means that an operation could be

applied multiple times without changing the result that the initial application of that operation
had. For example, if the container orchestrator issues a call to the storage system that says,

“Hey, I want to provision the amount of space that I need for a volume on my container
orchestrator, or I want to be able to have this volume abstraction so I can interface with it and

write database entries to it.

If you made that call to the storage system, you could imagine all kinds of networking failures
that would result in a block of storage being allocated on the storage system, and then maybe if

the call fails and that storage block got allocated, but it never got assigned within the container
orchestrator to a specific volume. Then the container orchestrator might retry and then the

storage system would spin up another blob of storage, and then the first blog of storage would
be orphaned. I mean, that kind of thing would be problematic. Describe some of the difficulties

around item potency in the interaction between a container orchestrator and the storage system.

[0:34:05.7] JY: Yeah. The example you give is exactly right, the exact problem we face when
we deal with previous interface, like Docker volume driver interface. For example, the create

volume call in a DVDI interface is not item potent. You don’t specify the idea of the volume into
the create volume call. Instead it will return an ID to you and if the response you – The CO didn’t

receive the response, then that volume created by the backend will be leaked [inaudible
0:34:30.7] have a handle to that volume, and that’s a big problem for a full storage system and

that’s [inaudible 0:34:35.4] we’re trying to kind of fix that by requesting that, “Oh, the create
volume call should be item potent.” What that means is essentially you have to specify a name

or an ID of the volume where you make the call and so that the CO has a reference to that
volume handle, like name or the ID and so that even if you don’t receive the response, you can

try that call again and then we dictate the storage providers makes sure that if the same volume

© 2018 Software Engineering Daily �14

SED 602 Transcript

ID is used, it should result in the same result. It will give you – It will return a success eventually

to the CO, and CO will receive the response and processing the rest.

I think these are just based on the experience that we have when we’re building such a system.
I think another example for that is AWS EBS API. Itself is not item potent, because when you’re

actually creating the EBS volume, the call don’t allow you to adding tags atomically. It can only
add a tag once the volume is created. So that’s problematic, because once you create a

volume, if you don’t receive the handle, that volume will be leaked. The same issue that I
described earlier. Then we face a lot of issue with EBS due to that, and that makes us think that

item potency is really important, otherwise it will be so much painful to recover those create
volumes. So that’s the reason we put that as a top priority for the CSI spec when we first

discussed that to trying to solve those real issue that we saw in production.

[0:35:58.8] JM: Can you solve item potency at the specification level or do the vendors that are

writing to the container storage interface that are writing their interface, like if I’m Amazon, I’m
writing in my EBS connector, my CSO compliant, my container storage interface compliant

connector to connect to Kubernetes, to connect to any container orchestration system. This
would connect to Kubernetes. It would connect to Cloud Foundry. Do I have to specify the

strategy for my item potency?

[0:36:32.5] JY: Well, I think the spec dictate that the implantation should make the call item
potent. In the interface, for example, create volume. In the interface, there’s a field called name.

So the CO will actually specify the name, the volume, where it should create volume call. So it’s
plugins responsibility to make sure that call is item potent. What that means, if the CO issue the

same create volume with the same name, only one volume should be created. It’s plugins
responsibility to satisfy that requirement from the spec. I know that some of the source system

might not be able to achieve that using their existing APIs. So that’s their job to fixing their API to
make the life of the CO much easier. Otherwise, just like there’s no way to fix that failure recover

issue in the case of like response get dropped. So that’s a historically issue that we saw, and I
think that’s a way to drive those vendors to fix their API to make their APIs item potent so that

they can satisfy the spec so that we don’t have this issue. Otherwise, this issue will never get
fixed.

© 2018 Software Engineering Daily �15

SED 602 Transcript

[0:37:37.3] JM: So this is a serious issue.

[0:37:38.7] JY: Right, in production.

[0:37:40.7] JM: In production. So is the consequence of this that you just get like wasted
storage space, this orphaned storage space problem or are there more severe consequences to

not having item potency here?

[0:37:53.5] JY: I think it’s mainly the leaked volume. I think that’s for the create volume call. For
other calls, it just cause issues with CO. For example, when you do a controller publish, which is

essentially just attach a volume to a given box. If that response you don’t receive the response
for that call, the CO don’t know what to do the next, because the volume might be already

attached to a volume or might not be attached to the volume and CO might need to – Without
the CSI, the CO might need to use some different mechanism to figure out whether the volume

is attached or not. It just creates so much pain for CO to deal with that kind of logic.

The interface, trying to solve that problem by define exact semantics and say, “Hey, it has to be
item potent.” Simplify the life for CO and also help to kind of alleviate those failure recurring

problems. The storage vendor – It creates some burden on a storage vendor, of course, but I
think that’s the right direction. I think the blog post that the Stripe engineer wrote at the time

basically saying that any distributed system, if you want to design a robust and predictable API,
you have to make the API item potent. I think that should be the first design goal when you start

to work on a distributed system.

[0:39:01.6] JM: I’ll certainly put that link in the show notes. I want to check that out myself. It
actually doesn’t sound that hard for a storage vendor to implement this, to fix whatever issues

they would have, because if the spec is that the container orchestrator declares a name and an
ID associated with the backing storage block or a quantity of storage that they’re requesting,

and then they communicate that to the backing storage system, and then the backing storage
system checks if does something already exist on my side with that name and ID. If so, then

maybe I just connect that to the container orchestrator and things are fine. If it doesn’t, then I
instantiate it. It shouldn’t be that complicated, right?

© 2018 Software Engineering Daily �16

SED 602 Transcript

[0:39:50.4] JY: Yeah. Actually, let me give you one example, which is EBS. At the time we
looked at EBS API. It’s very hard to make that call item potent. The reason for that is AWS don’t

give you an atomic way to say, “Hey, I want to create a volume and also attach some of the tags
to the volume.” I haven’t checked the recent API, but at the time we checked the API. It’s like

that.

What that means is you have to create the volume first, get the volume ID and then attach some
tags to the volume, which is essentially the name that’s specified by the CO. But it’s not atomic.

Basically it means that if the plugin crashes or the CO crashes in the middle, once the volume is
created, but the tag has not been attached to the volume, that volume will still be orphaned. It’s

about the design.

I mean, [inaudible 0:40:32.6] probably don’t have that issue, because they allow an atomic
attach of tag to a given volume. So that can make the call item potent pretty easily just to say,

“Hey, attach this given name to the volume.” It can still return me a volume ID. That’s fine, but
the volume will have a tag so that I can check whether the tag exists for that volume if

something fails before. So that’s easier. But for some vendor, it’s not that easy using their
existing API. I think that’s kind of a good thing. I think the spec kind of force them to fix that

issue, because I think that has been the issue for a long time and people knows about that
issue, but no one is trying to fix that.

[SPONSOR MESSAGE]

[0:41:14.6] JM: Azure Container Service simplifies the deployment, management and

operations of Kubernetes. Eliminate the complicated planning and deployment of fully
orchestrated containerized applications with Kubernetes. You can quickly provision clusters to

be up and running in no time while simplifying your monitoring and cluster management through
auto upgrades and a built-in operations console. Avoid being locked into any one vendor or

resource. You can continue to work with the tools that you already know, such as Helm and
move applications to any Kubernetes deployment.

© 2018 Software Engineering Daily �17

SED 602 Transcript

Integrate with your choice of container registry, including Azure container registry. Also, quickly

and efficiently scale to maximize your resource utilization without having to take your
applications offline. Isolate your application from infrastructure failures and transparently scale

the underlying infrastructure to meet growing demands, all while increasing the security,
reliability and availability of critical business workloads with Azure.

To learn more about Azure Container Service and other Azure services as well as receive a free

e-book by Brendan Burns, go to aka.ms/sedaily. Brendan Burns is the creator of Kubernetes
and his e-book is about some of the distributed systems design lessons that he has learned

building Kubernetes. That e-book is available at aka.ms/sedaily.

[INTERVIEW CONTINUED]

[0:42:50.0] JM: Continuing the conversation of this being a distributed systems specification
that we’re trying to design here. The APIs between the container orchestrator and the storage

system could be synchronous or they could be asynchronous. If they were synchronous, then a
given API call would be – You would have guarantees that it would be executed atomically.

Everything within the system call would execute before the system proceeded. Asynchronously
would mean that you would initiate a request from the container orchestrator to the storage

system and then it would be non-blocking and the container orchestrator will continue doing
work and then eventually we get a callback from the storage system and finish up whatever

other kinds of work you have to do around the API you’ve made. What are the tradeoffs
between synchronous and asynchronous APIs between the container orchestrator and the

storage system?

[0:43:46.4] JY: Yeah, I think the main reason want asynchronous, especially the storage API is
because some of the storage operation is super long. For example, to attach a volume or

detach a volume might take minutes or like tens of – Like 30 minutes. I’ve seen cases where
like a detach take 30 minutes. So since it’s super long and when an operation is long, the

natural design question is whether this API should be async so that I have a callback. In the
meantime you can start to process some other operations. But the tradeoff of an async API is

that it’s significantly more complex than a synchronous API, because then you have to have
some sort of ID for your operation, and when you receive a callback, you have to correlate that

© 2018 Software Engineering Daily �18

SED 602 Transcript

response to a previously pending operation. So it creates so much complexity into the COs

code.

Also, I think the async itself – The reason people want async is because they think that it solved
the long running operation problem by using an asynchronous operation, but it really doesn’t,

because at the end of the day, the CO has to time out anyway, because if the CO didn’t receive
a response or callback after like 30 minutes, it has to time out just to be defensive. What if the

storage system is completely down or there’s no recovery, there’s no operator coming to fix the
problem? So the CO needs the defensive anyway to deal with those kind of scenarios. Async

really doesn’t have in that scenario.
 

I think the key here is trying to make the call item potent so that CO can just safely retry with the
same operation and expect the same result. If it doesn’t receive the response, it would retry

again until the timeout happens.

The plugging implementation can still be async. Just the interface between CO and the storage
vendor has to be synchronous for the sake of simplicity. Plugging can choose their

implementation. It can be async for sure, and I now many people choose to be async for long
running operations. That’s totally fine.

[0:45:39.6] JM: Let’s give an example here. I want to create a database on top of a volume on a

container orchestration system. Now that we’ve given so much detail into what the container
storage interface does, describe what happens. If I want to create a database for my WordPress

blog, on my container orchestrator, what’s going to happen behind the scenes? Maybe you
could give one or two examples of different storage systems that would potentially be a good fit

for backing this database that I needed to create and how these would be created and
connected to my container orchestrator.

[0:46:18.2] JY: Yeah. So let’s just EBS as an example and also using Kubernetes. So when you

deploy your –

[0:46:25.1] JM: Sorry. Amazon Elastic Block Storage, just for people who don’t know.

© 2018 Software Engineering Daily �19

SED 602 Transcript

[0:46:28.6] JY: Right. Okay. I use Kubernetes as an example just to demonstrate how this

whole thing works. The operator will actually talk to API server to create your MySQL
application, a bunch of pod, and a pod is just a collection of container that’s running on the

same network name space. When the CO first needs to make a scheduling decision to where to
place those pod. Once that scheduling decision has been made, seem the container, the

MySQL container, needs a volume to store its data, a persistent volume to store its data, the CO
will find out that, say, the MySQL pod needs a volume and the agent component of the CO in

this case is a kubelet, will actually try to make that volume available on the node so that MySQL
application container can actually write to the volume.

So the CO will actually – At this time, will actually try to attach the volume. Let’s assume the

volume already exists. I’m going to back to talk about if the volume does not exist, what’s the
workflow? If the volume already exists, the COs will actually just invoke the CSI interface to

attach the volume to a given node that the scheduler pick and mount the volume on a specific
location on the node. Then using Docker to launch the container and when the volume for the

container is actually that mounted file system on the node already that previously done by the
CO by invoking the CSI interface.

So that’s kind of the launch path where you have the workload reference to a persistent volume,

and assuming the volume already exists. If the volume does not exist – So in Kubernetes, the
typical way is the container will – The [inaudible 0:48:07.6] will actually specify a persistent

volume claim saying, “I want a 10 gig volume that has storage class full,” and a storage class as
I mentioned is an indirection from a name to a set of vendor specific parameter for that class or

storage, and Kubernetes will actually translate that volume, storage class fast to a bunch of
vendor specific parameters and actually call the CSI interface when [inaudible 0:48:34.5] a

persistent volume claim and if there’s no persistent volume that binds to that claim yet, you’re
trying to create a new persistent volume that can satisfy the requirement of that claim. At the

time, we’re trying to call CSI create volume, trying to create a volume, persistent volume by
using that CSI interface and the backend will actually provision an actual EBS volume for that

persistent volume claim and this will bind to that persistent volume claim. Then the rest will be
the same, that the [inaudible 0:49:02.5] will be scheduled by the scheduler on node. The kubelet

will actually make the volume available on a node by invoking the CSI interface publish volume
and controller publish and node publish.

© 2018 Software Engineering Daily �20

SED 602 Transcript

[0:49:13.3] JM: Once that database is wired up and it’s connected to the backing EBS storage,
what happens if my database application container, or my container orchestration system. What

happens if my database application container dies?

[0:49:30.3] JY: If the application dies, the scheduler will make a decision to where – I mean,
basically, the scheduler will try to restart the same application not necessarily on the same

node, but potentially on a different node. So if that happens, for example, the scheduler decides
to place the application on a different node, then the kubelet will actually try to make sure that

the same volume will be accessible from the second node and it will try to do the detach first.
For the EBS case, you’re trying to detach EBS volume from the previous node first and then

attach to the new node, and that all process, if through CSI by calling some specific CSI
interface, and unpub controller no publish volume, and then controller publish to a new node

and controller node publish to the node.

[0:50:12.3] JM: Right. If you have your database application container and that container is
scheduled on a pod and the volume is connected to a specific pod, because each volume in

Kubernetes is connected to a specific pod, that volume is connected to your database
application container. Your database application container dies. So the database application

container is going to get rescheduled on to either that node, in which case it can just reconnect
that node and it will probably get scheduled to the same pod or if it gets scheduled to a different

pod, then your volume could just get unmounted then reconnected to the other pod on the same
node. Alternatively, if there’s a different node, as you said, the volume would get disconnected

from the previous node and then would get reconnected to that new node. Okay. We walked
through that failure scenarios. Is there a failure scenario that would be common in the case of

the storage system failing? Your EBS – I don’t know much about Amazon EBS, but can that
system fail and then does the container orchestrator have to reschedule for a new storage

backing system? Does it have to reschedule in that instance?

[0:51:33.4] JY: This is typically – It’s a hard problem and usually require operator to intervene.
For example, usually, when you discover this problem, usually some metrics of the application

self goes wrong. For example, your right time for each transaction, like the time you need to
perform a transaction goes extremely high and those metrics trigger some alerts and the

© 2018 Software Engineering Daily �21

SED 602 Transcript

operator will come in and will get paged. First get paged, “Why this metrics goes so high?” and

trying to figure out the root cause. There might be some diagnosis information they can collect
for each individual vendor to indicate, “Oh, this volume, the disk goes bad. It needs to be

rescheduled.” If that happen, the usually like manual intervening is required and the operator will
usually like replace the disk. In the traditional world, the operator will just replace the local disk.

In the cloud native environment, I think that you can just reschedule – I mean, if the database
itself is replicated, then you can just start a new node with a fresh disk and it will start replicate

itself.

If the database itself is not replicated and the data goes bad on your disk, I don’t know what you
can do. You can try very hard to recover your data from the disk, but this is pretty rare given

that, for example, EBS has a replication itself. So the probability that this happens I pretty low.
But if that happens, I think there’s nothing you can do. The data is being uncorrupted on the

[inaudible 0:52:58.7] and if you don’t have replication, then it’s a bad situation. Anyway.

[0:53:03.2] JM: Let’s zoom out a little bit. Why is this interface important to Mesosphere? You
work at Mesosphere. Mesosphere is a business, and obviously it’s based on open source

technology, and so open source technology is somewhat important at a core level to
Mesosphere. Why is the container storage interface uniquely important such that your full-time

job right now, or maybe it’s not your full-time job, but you spend a lot of time on this container
storage interface, which is an open source community interface project. Why is this important

enough that Mesosphere has allocated resources to it?

[0:53:42.2] JY: Yeah. I think from company’s perspective, from Mesosphere’s perspective, we
want to solve customer issues. I think one of the issue that our customer has is storage,

because we see a bunch of issue with our previous interface that we use for storage integration,
which is DVDI. But as I said earlier that we find out a lot of the issues, real production issues for

those because of using that interface, and that’s a reason kind of we start to think and also like
talking to other folks from different COs to see if they have the same problem. It turns out that

they have the same problem and we are trying to solve the same problem. So that’s the
motivation from our company’s perspective, because we have customer that ran into real issues

with their existing interfaces and they want to fix that and we also talk to other COs and they
have the same issue. So kind of our goal is kind of aligned and great, so we need to figure out a

© 2018 Software Engineering Daily �22

SED 602 Transcript

new interface so that it will benefit everyone, benefit our customers, benefit their customers,

benefit storage vendors too. So that’s a reason like we spend resources to build this community.
We want that to be successful. We want to reduce the burden of storage vendor. We want to

make our customer happy because we’re using that new interface that solve some of the real
production issues for our customers.

[0:54:58.2] JM: So you and I were both at KubeCon in Copenhagen recently, and what I

thought – I guess what I took away from a business point of view at KubeCon was that there
were a lot of enterprises that were very interested in buying different products from container

product vendors. So there’re all these vendors in the container space. There’s obviously
orchestration vendors, like Mesosphere. There are security vendors. There’s monitoring and

tracing and all these different products, and enterprises are ready to buy this stuff. I don’t know
how much insight you have into this, but tell me about the buyer these days, the enterprise

buyers, the type of customer that Mesosphere is catering to. Maybe they’ve got a lot of legacy
systems. What are they looking for? When they shop around for these different container

product provider vendors, what are they looking for?

[0:56:00.6] JY: Yeah. We have customers from different – We are targeting for like fortune 500,
maybe fortune 2000 enterprises. The reason they want to buy the software is because they

don’t have the people resource to build them self and there are like specific features they’re
looking for that our platform provides. For example, one example is like security, like many of

the banking – We have a lot of banking customers that – They have a very strict security policy
and they require some security feature that would be on top of the open source solutions.

Some customer, for example, the telco – We have a lot of customer in the telco industry and a

lot of the case they’re looking for are something like IoT like thing and the reason that they buy
Mesosphere is because Mesosphere provide this platform that can run not just stateless

applications. It can also run stateful application, things like Cassandra, Kafka, and also it can
run analytics workloads like Spark. That kind of give kind of very coherent story, like you have

your IoT devices that collect data and that will be ingested into a pub/sub like Kafka, and then
you have your database, your key value store Cassandra and you have Spark that can actually

subscribe to these pub/system like Kafka and to do either like analytics and also persist those
data. It’s just like a very nice storyline for them to solve their real problems. I think a lot of

© 2018 Software Engineering Daily �23

SED 602 Transcript

customer buy us because we provide not just stateless solutions, also stateful solution like

Cassandra, Kafka, HTFS, these things that the customer need and they don’t have resources to
build themselves.

[0:57:39.6] JM: All right. Jie, it’s been great talking to you. I want to thank you for coming on the

show and talking about container storage.

[0:57:44.7] JY: Thank you. Thank you, Jeff. It’s nice talking to you too.

[END OF INTERVIEW]

[0:57:50.2] JM: GoCD is a continuous delivery tool created by ThoughtWorks. It's open source
and free to use, and GoCD has all the features you need for continuous delivery. Model your

deployment pipelines without installing any plug-ins. Use the value stream map to visualize your
end-to-end workflow, and if you use Kubernetes, GoCD is a natural fit to add continuous

delivery to your project.

With GoCD running on Kubernetes, you define your build workflow and let GoCD provision and
scale your infrastructure on-the-fly. GoCD agents use Kubernetes to scale as needed. Check

out gocd.org/sedaily and learn about how you can get started. GoCD was built with the
learnings of the ThoughtWorks engineering team who have talked about building the product in

previous episodes of Software Engineering Daily, and it's great to see the continued progress on
GoCD with the new Kubernetes integrations. You can check it out for yourself at gocd.org/

sedaily.

Thank you so much to ThoughtWorks for being a longtime sponsor of Software Engineering
Daily. We are proud to have ThoughtWorks and GoCD as sponsors of the show.

[END]

© 2018 Software Engineering Daily �24

