
SED 513 Transcript

EPISODE 513

[INTRODUCTION]

[0:00:00.2] JM: Over the last decade, computation and storage have moved from on-premise

hardware into the cloud data center. Instead of having large servers on-premise, companies
started to outsource their server workloads to cloud service providers. At the same time, there's

been a proliferation of devices at the edge. The most common edge device is your smartphone,
but there are many other smart devices that are growing in number; drones, smart cars, nest

thermostats, smart refrigerators, IoT sensors, next-generation centrifuges. Each of these
devices contains computational hardware.

Another class of edge device is the edge server. Edge servers are used to facilitate faster

response times than your core application servers. For example, Software Engineering Daily
uses a content delivery network for audiophiles. These audio files are distributed throughout the

world on edge servers. The core application logic of Software Engineering Daily on a
WordPress website, and that WordPress application is distributed to far fewer servers than our

audiophiles, because the audiophiles are the content they get distributed through a content
delivery network.

Cloud computing and edge computing both refer to computers that can serve requests.

Technically, all of these things could be treated as servers. The edge is commonly used to refer
to devices that are closer to the user so they will deliver faster responses. The cloud refers to

big bulky servers that can do heavy duty processing workloads such as training machine
learning models or issuing a large distributed map reduce query. As the volume of computation

and data increases, we look for better ways to utilize our resources and we’re realizing that the
devices at the edge are under-utilized.

In today's episode, Kenton Varda explains how and why to deploy application logic to the edge.

He works at CloudFlare on a project called CloudFlare Workers, which is a way to deploy
JavaScript to edge servers. Edge servers are, for example, the hundreds of data centers around

the world that are used by CloudFlare for caching.

© 2018 Software Engineering Daily �1

SED 513 Transcript

Kenton was previously on the show to discuss protocol buffers, which is a project that he led

while he was at Google, and if you want to find that episode as well as many other episodes
about protocols, serverless technology, many other topics, you can download the Software

Engineering Daily app for iOS or android. These apps have all 650 of our episodes in a
searchable categorized format. We have recommendations, related links, discussions around

the episodes. It's all free and open-source, and if you're interested in getting involved in our-
open source community, we have lots of people working on the project and we do our best to be

friendly and inviting to new people coming in looking for their first open-source project. You can
find that project to github.com/softwareengineeringdaily. You can find our slack channel at

softwareengineeringdaily.com. We would love to have you as part of the community if you're
interested in working on some open-source software.

With that, let’s get on with this episode.

[SPONSOR MESSAGE]

[0:03:18.0] JM: DigitalOcean is a reliable, easy-to-use cloud provider. I've used DigitalOcean for

years whenever I want to get an application off the ground quickly, and I’ve always loved the
focus on user experience, the great documentation and the simple user-interface. More and

more people are finding out about DigitalOcean and realizing that DigitalOcean is perfect for
their application workloads.

This year, DigitalOcean is making that even easier with new node types. A $15 flexible droplet

that can mix and match different configurations of CPU and RAM to get the perfect amount of
resources for your application. There are also CPU-optimized droplets, perfect for highly active

front-end servers or CICD workloads, and running on the cloud can get expensive, which is why
DigitalOcean makes it easy to choose the right size instance, and the prices on standard

instances have gone down too. You can check out all their new deals by going to do.co/sedaily,
and as a bonus to our listeners, you will get $100 in credit to use over 60 days. That's a lot of

money to experiment with. You can make $100 go pretty far on DigitalOcean. You can use the
credit for hosting or infrastructure and that includes load balancers, object storage. DigitalOcean

Spaces is a great new product that provides object storage and, of course, computation.

© 2018 Software Engineering Daily �2

SED 513 Transcript

Get your free $100 credit at do.co/sedaily, and thanks to DigitalOcean for being a sponsor. The

cofounder of DigitalOcean, Moisey Uretsky, was one of the first people I interviewed and his
interview is really inspirational for me, so I've always thought of DigitalOcean is a pretty

inspirational company. So, thank you, DigitalOcean.

[INTERVIEW]

[0:05:24.0] JM: Kenton Varda, you were last on the show to discuss protocol buffers and you’re
back on the show. Thanks for returning.

[0:05:32.4] KV: It’s good to be here.

[0:05:33.8] JM: You work at CloudFlare. On the last episode we talked about protocol buffers

and then your company Sandstorm and then how you eventually wound up at CloudFlare, and
today we’re talking with some technologies that are related to what you work on at CloudFlare.

So maybe you could briefly explain what the company does for people who do now.

[0:05:52.3] KV: Well, the way I like to explain it to people like my parents is CloudFlare runs
about 10% of the internet, more specifically, its 10% or so of web requests. HTTP requests end

up going through CloudFlare’s edge network where some people call us the CDN, but it’s a bit
more than that. Let’s put it this way; if you have a website and you put it behind CloudFlare,

then when people visit your site, their web requests go to CloudFlare first where CloudFlare can
do a number of things with our network of — We have servers in 118 locations, I think, is the

number today. We can cache resources from your site so they can be served directly from that
location that’s much closer to the user then your servers might be and are to respond more

quickly, and slew of other features, security features, blocking, denial of service requests,
blocking hacking attempts. There's a long list of though. You have to go to the website to see.

[0:06:52.7] JM: Right. At a basic level, people could consider CloudFlare to be a caching

service, but it's more generalizable than that. It's edge servers. So if you want to service a user's
request, any times that user request can be served entirely by an edge server as opposed to

your core infrastructure, which might be on Google Cloud, or AWS, or Heroku or hosted on your
own servers. You would want to use CloudFlare for the majority of those requests if you could,

© 2018 Software Engineering Daily �3

SED 513 Transcript

because the distribution of all those different edge servers is going to make them closer to the

user, and therefore you're going to get more performant responses sort.

We’re going to be talking about these edge servers. How would you define an edge server?

[0:07:41.9] KV: So there’s a lot of different things people mean when they say edge. What we
mean is — So our network of 118 data centers around the world, they’re basically servers that

are spread out all over the place that they are close to the end users, and that's basically it. Like
we have servers that are within 10 milliseconds latency of 90% of the world’s population, and

there's lots of ways you can use that.

[0:08:07.9] JM: When you compare that to a model like AWS, or Microsoft, or Google Cloud,
these other cloud providers, is their competitive advantage. Are the servers more geographically

distributed than those other cloud providers?

[0:08:23.6] KV: Yeah. So usually when you use something like AWS or Google Cloud, when you
start out, you have your servers and you decide one particular region that you put them in, and

as you grow you might ask do multi-homing and have servers in multiple regions, but the total
number of regions that AWS or Google Cloud give you is a handful. There's like a few locations

in the United States, a few locations in Europe, a few in Asia, but it’s not a huge number.

But then what you would do is with CloudFlare you would put CloudFlare on top of that. So
you’d use these together. It’s not either/or. So then you can leverage CloudFlare having servers

everywhere to make your site faster and more secure and more reliable.

[0:09:05.5] JM: We’ve done some shows about using IoT edge servers. So we’ve had some
conversations about the idea of connected cars, for example. Once we have all these cars on

the road that have servers inside of them essentially, like the a world full of Teslas, or when you
talk about all the IoT devices that we might get in the coming future, your IoT refrigerator, your

IoT speakers, your IoT light switches. Who knows? then drones, for example. If we have drones
buzzing around outside. All of these different devices could be used for edge computing. How

do you think about edge computing on data centers versus on IoT devices?

© 2018 Software Engineering Daily �4

SED 513 Transcript

[0:09:51.8] KV: So this is one of those other definitions of edge that some people use. I think

that the definition we’re using goes back a little further than this newer definition. But yes,
sometimes when people say edge, they mean all desire IoT devices. Now that’s not usually

what we mean when we’re talking about our edge network of data centers. This is just a
different definition, I guess.

[0:10:15.4] JM: Yes. Okay. Many people are familiar with the idea of a CDN, and let’s say you

make a request for an image on the internet, and the first time you request that image, perhaps
it's served by the source of where that image is. Maybe it's in the Amazon S3 bucket

somewhere on the internet, and because the user has requested it, that image gets stored in a
cache somewhere. Maybe it get stored in a CDN on the edge or somewhere on CloudFlare, if

you want to call CloudFlare or CDN, get stored in CloudFlare perhaps, so that the next time
somebody else accesses it, that access is faster. So this is the common model of just throwing

storage on an edge server as a CDN. We’ve had CDN's for a long time, Akamai, Libsyn, the
company that serves the podcasts that I have. It’s served from a CDN. These are often the

content delivery networks, because you have this content that's often — Netflix has tons of
CDN's or has tons of — I don’t know, what they use for CDN, but they have tons of content

throughout CDN's. But a CDN, thinking of edge servers just for CDN purposes, is a somewhat
limited idea, and I think what we’re going to get to talking about is the fact that you don't just

want to put storage on edge devices. You actually want to put compute logic on the edge. You
don't just want to be using this is as a CDN. Why would I want to deploy logic to the edge?

[0:11:48.1] KV: Well, sometimes you want to interact with the user in a way that is not static. So

with just the cache, all you can do cache static assets, like images and such that no change. But
say you have a website and it's like a new site, so it contains mostly static content and that the

articles don't change very often, but people log in to your site because they have subscriptions.
Once they login, now you want to say at the top like, “Hello X, you are logged in,” and that's a

little change to your site. That now means that the pages are all different for that user than they
are for everyone else. So now they can no longer share a cache effectively. I mean, you can do

it in JavaScript, perhaps, but sometimes people don't want to do in JavaScript. So if you could
write some code that runs on the edge and can substitute in the user's name from there, then

you can return results much faster rather than going all the way back to your home server.

© 2018 Software Engineering Daily �5

SED 513 Transcript

[0:12:47.8] JM: Right. Does this start to become something where if we start to deploy some

logic to the edge, you could imagine slippery slope where, “Well, let's just put all of our servers
on the edge. Let's service every single user request from the edge.” Why is that not a slippery

slope? Why would we not start doing that?

[0:13:06.7] KV: We don't know yet if this is where this is going to go. For now, our goal in
making this so you can write code on the edge is more around these kinds of optimizations, but

over time we’ll see what happens. So, I mean, one problem though is, of course, you do still
have a database somewhere usually. You have some storage that you have to talk to, and that,

at least today, usually isn't decentralized. So you're going to have to make requests back to the
database, and if you're making more request to the database than you are communications with

the user, then maybe the code should be closer to the database. Really, you want your code to
run so that is closest to whatever you're communicating with the most.

[0:13:47.7] JM: Right. Yes. So if I’ve got like the softwaredaily.com, the site that we have, when

a user logs in and we want to load the episodes that the user has queued up or that the ones
that they've listened to, if we serviced that request from an edge server, the edge server, if it had

to make multiple database requests, it would have to make round trips between the edge server
and the database, and the database is not sitting on the edge server, because part of this idea

of edge computing that we’re going to get into is that you're going to want to put like lightweight
things on the edge servers, because this is how these edge servers get to take advantage of

economies of scale. This is why they're not big bulky. You're not throwing your entire database
on there, although eventually maybe you will.

[0:14:40.1] KV: Yeah, at least for now. I have some ideas around this.

[0:14:43.8] JM: Okay! Then we should probably hurry up and get to this design. But anyway,

just continue my example, if you stored that compute logic for — The business logic for
servicing the core user request, you would have to make the round-trip between that edge

server and the database, or multiple round trips, if you had to make multiple database requests
to compose the user’s information, like the episodes they've listened and the episodes they’ve

downloaded and then whatnot. And so what you are saying is you would want to keep that kind
of business logic closer to the actual database.

© 2018 Software Engineering Daily �6

SED 513 Transcript

[0:15:20.0] KV: Depending on how you do it, but, yeah.

[0:15:22.2] JM: Right. Depending on how you do it. Okay. So I think we've given people a good
overview for logic at the edge versus where you would want to put logic on your core server

infrastructure. You work on this project called CloudFlare Workers, which is basically the idea is
you put this logic at the edge. Can you give an outline for what these CloudFlare Workers do?

[0:15:46.9] KV: Yeah. So the name CloudFlare Workers is derived from web workers, which is a

standard feature that browsers have of basically JavaScript that runs in the background, and
specifically there's a is a kind called service workers, which is some JavaScript that runs in the

background and can intercept all requests from the browser that go back to your server and can
like rewrite them and such.

What we did is we said, “Well, we want people to be able to intercept requests to their server

when they reach CloudFlare and rewrite them there.” But that’s basically, coding-wise, the same
concept. So we took the service workers standard that already exists in browsers and made it

so you can deploy service workers that run on CloudFlare servers instead. So basically you’re
writing JavaScript that runs on the server, intercepts web requests, can respond to them directly

, can call back to the origin server, call back to other servers. Basically do whatever you want,
and then eventually reply.

[SPONSOR MESSAGE]

[0:16:55.3] JM: If you are building a product for software engineers or you are hiring software

engineers, Software Engineering Daily is accepting sponsorships for 2018. Send me an email,
jeff@softwareengineeringdaily.com if you're interested.

With 23,000 people listening Monday through Friday and the content being fairly selective for a

technical listener, Software Engineering Daily is a great way to reach top engineers. I know that
the listeners of Software Engineering Daily are great engineers because I talked to them all the

time. I hear from CTOs, CEOs, directors of engineering who listen to the show regularly. I also
hear about many newer hungry software engineers who are looking to level up quickly and

© 2018 Software Engineering Daily �7

SED 513 Transcript

prove themselves, and to find out more about sponsoring the show, you can send me an email

or tell your marketing director to send me an email, jeff@softwareengineering.com.

If you're listening to the show, thank you so much for supporting it through your audienceship.
That is quite enough, but if you're interested in taking your support of the show to the next level,

then look at sponsoring the show through your company. So send me an email at
jeff@softwarengineeringdaily.com.

Thank you.

[INTERVIEW CONTINUED]

[0:18:22.7] JM: Service workers intercept web requests that are destined for your servers.

Explain how service workers are traditionally used.

[0:18:33.5] KV: So one of the major goals of the service workers standard originally was to be
able to serve off-line applications. So the idea was that you have like a document editor app or

something, think of Google Docs. A lot of this work was done at Google. You want to be able to
go on an airplane and keep editing your document, and since it's a web app, traditionally, you

can’t do. So what a service worker can do is pre-download all of the resources for that web app
and store them in the local cache and then be able to serve them out of that cache, because it

intercepts all web requests going to that server. So it can act as like a stand-in server that runs
locally. Now, the use case for CloudFlare workers is actually very different, but the code ends up

looking similar.

[0:19:23.4] JM: So describe how service workers are used in these edge workers.

[0:19:29.9] KV: Edge workers is actually internal name, but the official brand name is
CloudFlare Workers.

[0:19:35.5] JM: Oh, yes. I'm sorry. Okay.

[0:19:37.8] KV: I believe one of our competitors has a product they're calling Edge Workers.

© 2018 Software Engineering Daily �8

SED 513 Transcript

[0:19:41.7] JM: No. Okay.

[0:19:42.8] KV: So in CloudFlare workers, I mean, you write your code in the same way as if
you're writing a service worker. So the basic structure of your code is you register an event

handler that will be called whenever a web request comes in, and then the event handler
essentially returns a promise for a future response and then it can do some I/O. It can make

other request, outbound requests in order to build that response and eventually return that
response.

[0:20:11.9] JM: Can you give a simple example for how somebody would want to use one of

these workers? How they would deploy their code to it? What they would be deploying it for and
how those requests would be serviced?

[0:20:25.4] KV: Right. So I gave an example earlier of you want to substitute in the user’s name

into some HTML, and you want to do that while being able to cache most of the content to that
HTML between users. So you'd write some code that basically the first thing it does is it

requests the same — Well, so it receives this request for some URL, some page, and it makes
the same request on to your origin server, and so it receives back this HTML that isn't

personalized for the user and then it can have some code that reads in the HTML content and
does a search and replace for some string where that's a place where you’re supposed to insert

the username, and then writes that out.

Other use cases though, there's tons of use cases for this. Other things you might do are like if
you want a custom load-balancing policy, so you want to send different requests to different

servers depending on some arbitrary signal or you want to serve — Say, you have some
resources that are in an S3 bucket, but you have other parts to your site that are dynamically

generated. So for the dynamic resources, you want to send it on to your server running
somewhere, but for the static ones, you want to just pull them straight out of S3 without

bothering your home server. These are all things you can do with this.

© 2018 Software Engineering Daily �9

SED 513 Transcript

[0:21:49.4] JM: Just to set some context, what's the penalty for people who are not using this

kind of edge logic today? Are we just talking about latency or does it result in additional costs?
What are the savings that you get from deploying more logic to the edge?

[0:22:07.6] KV: So it’s is highly dependent on the use case, but, yeah, in a lot of cases it's

latency. The latency of going all the way back to your origin server for something that could have
been done with some simple logic at the edge. Some people might use this for — Well, so in the

case I mentioned of like I want to serve some resources from S3 instead of from my origin
server, you’re saving serving costs, because normally the way you'd implement that is you

would have your origin server go fetch the things from S3 when it recognizes that this is a
resource that has to come from S3, and that means a bunch more traffic is going through your

origin server that really doesn't need to be and it’s going all the way back over the internet to
your origin server instead of S3 is replicated all over the world already. So fetching it directly

would be faster. So there're a lot of things you can save.

[0:22:57.0] JM: Right. So if this gives programmable logic to these edge servers that might
have previously just been used for declarative logic, like you declare that you want your CDN to

be used versus the imperative model of actually having executable code that's going to be
deployed to these edge servers. Does that change the kind of — Like, for you as the cloud

service provider, as CloudFlare, does that change what kinds of things you need to deploy to all
these servers that you have throughout the world? All of these edge servers that you have

available?

[0:23:39.3] KV: Yeah. We have to deploy the worker runtime, the JavaScript runtime, to all of
our machines, all of our edge servers around the world. This is the main project that I work on,

is building this core runtime. It’s basically just another background process that runs on all these
machines that when we receive a web request that we know has a worker script configured, that

it gets forwarded to this daemon. If the script does sub-requests, this outbound HTTP request,
then those get forwarded back, back in the front door, basically.

[0:24:16.2] JM: Yeah. This code they gets deployed to your edge servers for logic, it’s in

JavaScript.

© 2018 Software Engineering Daily �10

SED 513 Transcript

[0:24:24.7] KV: Correction. So the code I was talking about is actually a C++ program that

embeds V8, the JavaScript engine. I was talking about our code. The customer's code, if you’re
a CloudFlare customer and you're using this, you go into the CloudFlare configuration

dashboard and there's a place where you can enter your script and you can preview what the
results will look like. But once you deploy that, then that script gets also sent out to all of the

edge machines. And so then my code on the edge will load that script as needed and use it.

[0:24:57.1] JM: Okay. Right. To give people a little more clarity, V8 is what's sitting in your
Chrome browser, if use Google Chrome. I think it's basically — It's an execution engine for

JavaScript, like what is it? It compiles your JavaScript down to byte code and then executes the
JavaScript byte code. Is that how it works?

[0:25:19.8] KV: Yeah. It can do a variety of things. So usually it will parse the JavaScript code

and it will start out just basically parsing it into some internal structures, which it will run the code
like an interpreter would going through each line and doing what it says. But then if someone

code is run particularly often, then it invokes the just-in-time compiler, the JIT, which turns it into
assembly, or not assembly, but machine code at that point. That’s typically how this work. V8 is

a little bit more complicated than that, but that's the basics.

[0:25:52.4] JM: I really need to do a show on V8. People have asked for it. Maybe if you some
V8 expert, we can figure out who I should interview after this show. I'm sure, since you worked

for Google for a while, you probably know a few V8 experts.

[0:26:07.6] KV: You know, I don't know if I met them at Google, but we’re talking to them now.
So, yeah.

[0:26:12.1] JM: Okay. Very interesting. Tell me a little bit about that space, like the V8 space.

Does node - Node must use V8, right?

[0:26:20.1] KV: Node was one of the first interesting uses of V8 outside of Chrome. They said,
“Yeah, let’s make a server-side JavaScript environment. Let's use V8 as a starting point.” But

interestingly, node is not designed to run code that's not trusted, whereas the browser is, and
CloudFlare Workers is. Like we need to protect ourselves against customers who might want to

© 2018 Software Engineering Daily �11

SED 513 Transcript

run code that's malicious. So we do lots of things to prevent that from being a problem that isn’t

present in Node.js.

[0:26:54.8] JM: So just to give people more clarity, this is why you don't have Node.js running
for this execution environment of the edge logic. You have your own worker environment that's

built off of V8. Was it custom-built? You built it yourself?

[0:27:11.1] KV: Yup.

[0:27:11.8] JM: Okay. Could you maybe contrast it with Node.js, because you're describing a
server-side execution environment for JavaScript, but it's Node.

[0:27:21.8] KV: Right. Node.js was designed to allow you to write traditional servers in

JavaScript. Now in a traditional server, you're writing a bunch of code that belongs to you. You
know where it came from. You wrote most of it, and you're running it on your private machine,

and so there is no security concern in which you're worried that part of that code might be
malicious. Node.js really isn't designed to protect against that, so the code running in Node.js

can access the file system, can make arbitrary network requests, can do whatever it wants.
Whereas in CloudFlare Workers, we are running code from potentially multiple different

customers on the same machine, so we have do a lot of things to make sure that the code,
those different customer’s codes can't interfere with each other in any way. That includes like

they shouldn't be able to obviously read each other's memory. They shouldn't be able to affect
the outcome of each other, and they also shouldn't be able to consume resources to the point

where the others get starved. These are all different interesting problems to solve.

[0:28:29.1] JM: Yes, and you did write about this in an article that I’ll include in the show notes
called Introducing CloudFlare Workers, and you talked about the design decision not to use

containers, and this is interesting to me, because I've done all these shows recently about
Kubernetes, and containerization, and scheduling, and serverless, and these things are all

related. Like serverless, many of the implementations — Well, actually, the main implementation
that I've seen is this idea where you have code that’ sitting in a database somewhere, and it's

sitting in a database on a cloud provider, and when a user makes a request for that code, it gets
dynamically loaded on to a container and then invoked from that container, and from the outside

© 2018 Software Engineering Daily �12

SED 513 Transcript

looking in, somebody might look at the CloudFlare Worker model and think, “Oh! This is

serverless. They’re just using edge servers and implementing serverless, and they're probably
using containers,” but that's not what you're using. So give a little more explanation for the

design decision not to use containers.

[0:29:33.2] KV: Right. As you know, I previously worked on something called Sandstorm, which
actually included a custom container engine which I wrote. So, initially, when we started the

workers project, that was my first inclination, was, “Well, we’ll give people containers, and that
they can run arbitrary Linux programs in that container.”

The problem with that is even though containers are known for being far more efficient than

VM's, they’re still not efficient enough, because we have millions of customers and thousands of
machines around the world, and we want like every customer’s codes to be able to run in every

location all at once.

The overhead of, if each one of those customers had their own process, their own program
running, that just — It takes too much memory on each machine and the overhead of switching

between processes for potentially every request going to different origins would just be too high.
What we need to be able to do is have them all in one process, all on the same address space

while still having the strong security, which is what V8 does, which is what V8 was built to do.

So in Chrome, for instance, when you have an I-frame inside of a page and that I-frame belongs
to a completely different site, they’re still running in the same process and they’re relying on V8

to make it so that the page in the I-frame can’t attack the page that's framing it or vice versa.

[0:31:07.2] JM: It’s partly security, partly noisy neighbor issues.

[0:31:11.9] KV: Well, the reason for using V8 instead of using containers is performance, is
resource usage, is scalability. Well, that and I would say that containers have had some security

issues as well, but that's another story, but mostly it's the performance issues of like this way we
can mostly implementation underneath each of these scripts. Most of the CloudFlare worker’s

implementation can be shared between all of them instead of loading separate copies and
things like that.

© 2018 Software Engineering Daily �13

SED 513 Transcript

[0:31:42.8] JM: So why is it that all of these cloud providers — Well, as far as I know, I mean
they haven't talked much publicly about how their serverless systems are actually implemented,

but I know that this common model is one that uses the container-based scheduling, or at least
that’s what IBM OpenWhisk is. Actually, that's the only one that I actually can definitively say

that's how it works, is this container scheduling model, but assuming that that's how the other
ones work, assuming AWS does use containers. That's at least the rumor, I suppose, that I've

heard from other people. Are they crazy? I assume that the advantage that they get out of these
serverless platforms, like AWS Lambda is, they get these economies of scale where they have

all these users running compute, and then so they have these little blobs of compute that they
can allocate efficiently, and they do so using containers. Why wouldn't they just do that with V8?

What's the difference between the design of a serverless system like AWS Lambda and a
serverless system like CloudFlare Workers?

[0:32:47.5] KV: The big limitation obviously is that V8 runs JavaScript. It doesn't run arbitrary

code and arbitrary languages. Now, there is web assembly, which opens that up to C and Go
and so on, but it's not native code. But to answer this in a different way, and I should caution

that like I don't work for these companies, so I don't know exactly what their motivations are, but
I think that a lot of the developments in the server infrastructure space over the years have

started from bulky server technology that is bloated, that uses lots of resources, lots of memory,
takes forever to start up, things like that, all these things that didn't traditionally matter when you

had monolithic servers.

It used to be, you have your gigantic server written in Java and it takes 30 seconds or more just
to start, and it uses gigabytes of memory, and that was fine. No one cared, because you have

all that available to you and it doesn't matter how long it takes to start. But we’ve been taking
these server-side technologies and trying to fit them into smaller containers, if you will, so that

we can deploy more instances of them and have them running in more locations at once, and
they haven't scaled down very well. It's really hard to take something bloated and then make it

leaner.

Now, what we’re doing with CloudFlare workers is we’re actually starting from the other end of
the stack, the browser side technology, and scaling it up. So browsers, for a long time, have the

© 2018 Software Engineering Daily �14

SED 513 Transcript

problem that they download some JavaScript and they need to have it running within

milliseconds to satisfy the user who wants to see this webpage, and the users is there literally
waiting.

So V8 has been designed for a long time to start fast, and that helps us with workers, because it

means that we can get your code deployed worldwide within literally a couple of seconds, and
we can load code. If a request comes in and your code isn't running yet, we can have it running

within a couple of milliseconds, and that’s just makes the whole system so much more scalable
and it allows us to run your code in more locations at once. So with lambda, for instance,

normally — Like, yeah, you create your lambda function, but it's not going to run in a lot of
different places in the world at once. It will run in a few locations. It’s not going to run in

hundreds, unless you get — I mean, maybe if you get enough traffic to warrant it, but [inaudible
0:35:17.7], and we can actually do that.

[0:35:20.0] JM: The other thing about these serverless systems, like AWS lambda, is that they

have this cold start issue because the code has to be loaded on to the container and maybe you
even have to install some packages and stuff on the container before it can actually service the

request. It has to get that the code itself out of the database. If people find this totally confusing,
we've done some shows previously about this you can check out. But there is this cold start

time.

So with the CloudFlare Worker model where you've got just JavaScript that runs on V8, when a
user deploys their code, like if I deploy some custom logic to render a template differently on the

fly, for example, some custom CloudFlare worker logic, does that code sit in a place where it
can execute immediately or does it sit in a database where it has to be loaded from the

database on to the edge worker before it executes?

[0:36:20.3] KV: So there's two steps. There’s distributing the code the edge, and then there's
loading it for execution. We distribute the code to the edge the same way we distribute any

other configuration that it gets worldwide within a couple of seconds. Now, the code is on all of
the machines ready to be run when needed. When we actually want to run that code, load it up

from disk and parse it and execut it. That takes a couple of milliseconds, because V8 is

© 2018 Software Engineering Daily �15

SED 513 Transcript

designed for this. Basically, with CloudFlare Workers, there is no cold start time. It’s just ready to

go.

[0:36:51.6] JM: I see. You mentioned web assembly. With web assembly, you could actually run
any language, because web assembly is this idea that — Web assembly or asm.js, where you

have a subset of JavaScript and every — Like any language could theoretically compile down to
this subset of JavaScript and then the subset of JavaScript runs extremely effectively on V8.

Could you just remind us what web assembly is?

[0:37:18.7] KV: Yeah. What you were just describing was asm.js, which was a previous attempt
at a similar idea. Web assembly is actually a new binary format that they said, “Okay. This whole

idea of like encoding assembly in a specially constructed JavaScript turned out to be kind of
weird.” So they went ahead and defined a format is like a machine code except it’s not specific

to any other machine, and it's designed to load within the V8 sandbox or within any JavaScript
sandbox. You can target a traditional compiler at these, so you can compile C++ code to web

assembly and you get, instead of an executable binary that runs on your system, you get a web
assembly binary that you can load into a browser, and other compiled languages, like Rust or

like Go can all target web assembly.

[SPONSOR MESSAGE]

[0:38:20.7] JM: Azure Container Service simplifies the deployment, management and
operations of Kubernetes. Eliminate the complicated planning and deployment of fully

orchestrated containerized applications with Kubernetes. You can quickly provision clusters to
be up and running in no time while simplifying your monitoring and cluster management through

auto upgrades and a built-in operations console. Avoid being locked into any one vendor or
resource. You can continue to work with the tools that you already know, such as Helm and

move applications to any Kubernetes deployment.

Integrate with your choice of container registry, including Azure container registry. Also, quickly
and efficiently scale to maximize your resource utilization without having to take your

applications off-line. Isolate your application from infrastructure failures and transparently scale

© 2018 Software Engineering Daily �16

SED 513 Transcript

the underlying infrastructure to meet growing demands, all while increasing the security,

reliability and availability of critical business workloads with Azure.

Check out the Azure Container Service at aka.ms/acs. That’s aka.ms/acs, and the link is in the
show notes.

Thank you to Azure Container Service for being a sponsor of Software Engineering Daily.

[INTERVIEW CONTINUED]

[0:39:47.8] JM: So some people are really excited about web assembly and I have trouble

identifying what the process of web assembly becoming big or, I guess, having a noticeable
impact on the way that we consume the internet will unfold. But, for example, my friend Pete

Hunt, he tweeted something a while ago about just all of the things that you can do on web
assembly and I just didn't really understand it. It made me want to do more shows on it, but

could you give me some context for why people are excited about web assembly? Where we
are with it? How it can change things in the future, or is it an open question as to whether it's

going to change things?

[0:40:30.5] KV: I can give you my take, but people will disagree. I think web assembly is mainly
going to be important to people who need to write extremely high performance code like game,

things that where you can't have garbage collection pauses every now and then because it will
harm your frame rate, or use cases where you have existing code that’s written in C++ that you

need to be able to run in these environments. These are all use cases where web assembly
makes a big difference.

I don't see a future where everything is written in web assembly, because, frankly, JavaScript is

good enough for most application bubble use cases. I think there're a lot of people who are
excited about web assembly, because they hate JavaScript, and my take is, yeah, the

languages is — It has its warts, but it has improved a lot over the years, and this point and given
that everyone knows JavaScript and it works well for most use cases, I think it's here to stay and

most things will continue to be written in JavaScript with web assembly for optimization,
basically.

© 2018 Software Engineering Daily �17

SED 513 Transcript

[0:41:43.8] JM: So if you want to use web assembly, what do you have to do? Do you have to
write some specific stuff for it? Like if I want to write — If I want my C++ application to run on the

web, what will do I have to do for that?

[0:41:59.1] KV: Yeah. So first you have to compile it with the compiler that supports targeting
web assembly so that you get the web assembly binaries and output. The other thing is you

need to code against the different set of APIs. You don't have your traditional operating system.
You don't have like a file system that you can open files from any more. In fact, you have almost

nothing to code against and you have to often — I should caution that I don't have a whole lot of
experience spreading things in web assembly, but my understanding is you have to implement a

shim in JavaScript that like provides the functionality that's needed so that you can then call that
from web assembly.

The HTML DOM API, how you would normally manipulate the website from JavaScript, mostly is

not available directly from web assembly, because taking that whole API and importing it into a
different language and creating those findings would just be actually very complicated. Usually,

instead [inaudible 0:42:58.9] assemblies use for is like heavy number-crunching or I believe you
can call OpenGL graphics rendering from it, because obviously the gaming use case needs that.

[0:43:11.5] JM: Okay. Let’s, I guess, get back to the main topic from web assembly. Now, that

gives me two shows I need to do related to JavaScript. So let's talk a little bit more about these
use cases for these CloudFlare Workers, and then we'll talk a little bit about the future, because

you mentioned that you've got some plans or some intentions or ideas at least. But to reframe
this product/idea for people, can you describe some of the other use cases?

So we’ve talked about expanding HTML templates dynamically. We’ve talked about some

caching related things, but I know there's also, for example, parallelization. A user request could
come in and your service worker that your CloudFlare Worker, service worker, is positioned to

take the request and intercepted it and then parallelize it. So maybe you could talk about
parallelization.

© 2018 Software Engineering Daily �18

SED 513 Transcript

[0:44:06.2] KV: I think what you're referring to there is like if you're your page has several

different components that need to be loaded and assembled together. Is that right?

[0:44:16.1] JM: I was actually just talking about something that is saw referred to in your blog
post. I wasn't exactly sure what you were referring to with the parallelization, but I could see

what you just described as being that's parallelizable.

[0:44:28.1] KV: Yeah. That might've been in the — I don't remember exactly what you’re
referring to. But it might've been in the section comparing against. There are some other

frameworks for programmable proxies where they don't really allow you to do several sub
requests, we call them, in parallel, so that those are the outgoing requests back to your origin

server or maybe to S3 or maybe to some other API.

With CloudFlare Workers, you can do as many [inaudible 0:44:54.0] requests as you want. You
can do them in parallel, fire off several of them, then wait for them to come back and then

assemble your result from them.

Like one use case that we’ve seen is someone has a GraphQL query that comes in from a
client, and GraphQL queries is often a bundle of smaller queries, and in their case each of these

smaller queries is independently very cacheable, like often requesting the same things over and
over, but the bundle together often contains different things depending on which client is asking.

So the overall request is not very cacheable, but the components are. So what they want to do
is split it up and do these requests in parallel and have each one come back directly from cache

so that they can get a much better cache hit rate.

[0:45:42.2] JM: Right. Yeah. I was going to say this sounds exactly like — It sounds very related
to GraphQL, which is this system for federating requests to multiple different data sources. If

you have a GraphQL server in the typical model of GraphQL that interprets a high level request
that requires several different resources and its federates that request to all the different servers

that might need. You’ve got like a user request that requires the user's favorites and the user's
likes and the user's comments and the user's friends, all of those things may be in different

databases, and so GraphQL queries might contain a query for all four of those different things
and then your GraphQL server can federate those requests out to those different database

© 2018 Software Engineering Daily �19

SED 513 Transcript

servers such that the person who's programming against GraphQL doesn't have to think about

hitting all of those individual servers. They can just think of one GraphQL query.

[0:46:48.7] KV: Right, and graphical federation server, especially if all of the separate
databases being queried are in different locations around the world, having that federation

points be something that runs on the edge makes a lot of sense.

[0:47:02.7] JM: You're saying you can do that with — I guess because you can just — People
just run these things in JavaScript, so you might as well keep your GraphQL server on the edge.

[0:47:12.0] KV: Yeah.

[0:47:13.4] JM: That's great. That sounds very useful. Do you know of people who are doing

that in production?

[0:47:18.5] KV: Well, so this is all very new. I don't know if anyone's doing specifically that in
production yet, but we do have a customer who wants to do something to that effect. By the

way, CloudFlare Workers is — Currently, our state, is we have a small number of beta
customers testing it out and we plan to open it up to more people in a month or two if things go

well, but we have to — This is something we have to roll out very slowly, because like if we just
open the doors and let everyone in on day one, like this is a big change star network. So we

have to be careful, but we’re getting there.

Just to comment on other use cases. Basically, we found the most interesting use cases are
things that we didn't anticipate. We come up with these simple cacheability use cases and such,

but then we keep seeing customers who come to us with really interesting things that we never
would've imagined, and I can't actually like go into a lot of detail about them, because that's

private to those customers, but the possibilities are basically infinite, and we’re just really
excited to see what developers come up with.

[0:48:23.9] JM: I’ll explore one thing that I would be surprised if your customers are not coming

to you with this use cases, the machine learning model edge deployment, because we’ve had a
number of different shows about this where people have commented on how cool this could be

© 2018 Software Engineering Daily �20

SED 513 Transcript

or how cool this is, where basically you keep your machine learning models closer to the edge,

because the user requests the model. Actually, machine learning is data intensive, but the data
intensive and compute intensive part is the training process, not necessarily the serving

process. Also, the model, you can have models that don't take up a huge footprint. So
somebody could be having their machine learning model sitting at the edge, serving user

requests, and then it just gets updated over time periodically, because the computation is
running elsewhere. The computation of retraining the model is certainly not happening at the

edge. Are you optimistic about the machine learning applications?

[0:49:21.6] KV: Yeah. That’s one of many things the we’ve thought about and we’re excited
about. Haven’t done a whole lot of experimentation with it yet, but it looks promising.

[0:49:30.5] JM: Yes. So earlier in our conversation you mentioned that you saw a potential for

more stuff being pushed to the edge, and when you said this, I was thinking of — This is not
entirely related, but this serverless database that Amazon came out with recently. I don’t know if

you saw it. Did you see this thing? The serverless Aurora database from Amazon?

[0:49:54.0] KV: I haven’t looked at it. No.

[0:49:55.4] JM: Okay. Well, it was — I don’t understand a whole lot about it. Basically, the idea
is just that it's a database that scales up and down, and I think the reason people are excited

about it is it's a database that can take up a small footprint. If you've got some service that
occasionally gets very spiky workloads and needs to request a lot of stuff from the database,

you want your database to be able to scale up, but if that only happens for one hour during the
day, you don't want to be paying for all the extra database nodes that it scales up to. You just

want to pay for like the minimum single database instance or something like that, and you could
imagine having that kind of serverless database on the edge where it takes up a small footprint

and then maybe you keep replicas away from the edge. I think this is essentially what we’re
talking about. We’re talking about what are the limitations of the edge servers, is like can you

get your database to the edge? Am I portraying things properly?

[0:50:56.4] KV: Yeah. The really interesting problem here is — As I said, CloudFlare has
hundreds of locations today. We’re planning to have, few years, thousands of locations around

© 2018 Software Engineering Daily �21

SED 513 Transcript

the world, but we don't want developers to have to think about what locations their code is

running in.

When you have a database, you don't think about where it is. You don't think about what data is
stored where. You just have your data. If you're querying that potentially from thousands of

locations around the world, there's some synchronization costs that goes into that, and most
database designs are fairly centralized where you're going to end up doing your database

requests all the way to the central location where it can process transactions relative to all the
other requests coming in, but I don't think that design takes proper advantage of the network

that we’re building.

So we’re thinking about what kind of storage would allow your code to have fast storage access
no matter where it's running, or like be able to move the data around the world so that it's

already there and ready when it's requested in a particular location. We’re still at like — This is
still in the sort of thinking phase, but it’s this really interesting big problem, and what I'd like to

see in the long run is people don't think about where their code runs or where their database is.
They write the code and it automatically moves to be close to whatever it is that it's interacting

with. If you have code that’s interacting with the user a lot, that code and the data, maybe the
data that belongs to that user all automatically migrates to be in the closest CloudFlare location

to the user, and if you have a code that interacting with, say, the Stripe API a lot, then it should
automatically move to be sitting in the same AWS data center that Stripe runs in. I think they use

AWS. I’m not sure. So that it's right next to those servers and you get fast access to that, things
like that. As an application developer, you really have no reason to think about having one

central server of your own. It's just your code runs wherever it makes most sense to run.

[0:53:09.1] JM: Do you have a vision for how long it'll take to get there or how much progress
has been made towards that vision? Because that’s a lot of complicated scheduling that would

have to go on.

[0:53:20.5] KV: Yeah. Well, as I said, we’re pretty early in thinking about this, but we have we
few promising ideas, but it would be really hard to say at this point how long that's going to take

to pan out.

© 2018 Software Engineering Daily �22

SED 513 Transcript

[0:53:32.2] JM: Fair enough. Well, I think that's a pretty good place to wrap up. Is there

anything else you're excited about right now? Like maybe using CloudFlare Workers for block
chain stuff or something. Any other closing thoughts on where this space is going or your

craziest ideas?

[0:53:50.9] KV: Working on a sandstorm previously, a problem we were trying to solve was this
data privacy and data locality and dealing with regulations that exists around the world that, say,

like your data must remain within these national borders or must not enter these national
borders, and I think this is a problem that has been largely ignored by cloud services, software

as a service industry up until this point.

I think a lot of people have just assumed that like these kinds of rules and these kinds of
concerns would just go away at some point as everyone realized, “Oh! Cloud services are so

great. Do I really care where my data is? Do I really need physical control over my data?” I don't
think that's actually going to happen. I think these laws and these concerns all exist for very

legitimate reasons and the exact rules might change a little bit to account for technology, like
account for the fact that if you're encrypting your data, then what really matters is the location of

the key, not the location of the encrypted bytes. But I don't think the fundamental concept is
going to go away.

What I really like to do is make it easy for a startup. Like Google has servers all over the world.

If Google needs to guarantee that your data doesn't leave the borders of Germany, it can
actually do that, but if you’re startup in San Francisco and you're just a few people, this is like an

intractable problem and you end up saying, “No. Sorry. If you have these rules, then we can’t
sell to you.” What if we could make this easy for users to be able to say, “I want my data to

remain inside my country, or I want my data to remain actually on this device that I buy from
CloudFlare or someone else that runs — That takes the code from the cloud and brings it here

and then runs it here so that my data stays here even though I get the experience of using a
cloud service and never having to update and so on?”

This is a problem that really interests me and that I hope we’re going to be looking into.

© 2018 Software Engineering Daily �23

SED 513 Transcript

[0:56:08.4] JM: This might sound boring to some people, but I've had a few conversations

about GDPR recently. What is it? General Data Privacy Regulation or something, the whole UK
thing, and I need to do shows on this as well, but this is like if you do not adhere to the policies

of the UK in accordance with data privacy, then it can cost you like a quarter of your revenue in
the UK or something. They have some insane fine that they charge you if a customer can prove

that you violated the privacy rules, and those privacy rules are really, really hard for a cloud
service provider to implement, especially if they’ve been operating for years and years and

years and years without paying attention to GDPR. Now, all of a sudden, they've got to
implement all these different things in six months or else they could potentially lose a quarter of

their revenue for the year in the UK. I can see why you would want to focus on this.

[0:57:08.6] KV: Yeah. My understanding is that’s not just UK, but general European regulation. I
might be wrong. I don’t know the exact details, but this is exactly my point, is that like Europe

has always had a different opinion about privacy than a lot of the United States had had, and
they're not just going to change their mind. In fact, the regulations are — We see them getting

stricter. We can solve this problem through technology that makes it easy to keep data where
the users want it to be kept instead of just burying our heads in the sand and saying, “Well, the

users will come around and eventually let us do whatever.” Yeah, I hope to see more this
happening and I hope to build some of it.

[0:57:54.7] JM: All right, Kenton. Great talking to you, as usual, and your last episode was really

popular. It was fantastic, so this was no surprise that this one was a good one as well. So
thanks for coming on the show.

[0:58:06.2] KV: Thanks for having me.

[END OF INTERVIEW]

[0:58:11.2] JM: GoCD is an open source continuous delivery server built by ThoughtWorks.

GoCD provides continuous delivery out of the box with its built-in pipelines, advanced
traceability and value stream visualization. With GoCD you can easily model, orchestrate and

visualize complex workflows from end-to-end. GoCD supports modern infrastructure with

© 2018 Software Engineering Daily �24

SED 513 Transcript

elastic, on-demand agents and cloud deployments. The plugin ecosystem ensures that GoCD

will work well within your own unique environment.

To learn more about GoCD, visit gocd.org/sedaily. That’s gocd.org/sedaily. It’s free to use and
there’s professional support and enterprise add-ons that are available from ThoughtWorks. You

can find it at gocd.org/sedaily.

If you want to hear more about GoCD and the other projects that ThoughtWorks is working on,
listen back to our old episodes with the ThoughtWorks team who have built the product. You can

search for ThoughtWorks on Software Engineering Daily.

Thanks to ThoughtWorks for continuing to sponsor Software Engineering Daily and for building
GoCD.

[END]

© 2018 Software Engineering Daily �25

