
SED 495 Transcript

EPISODE 495

[INTRODUCTION]

[0:00:00.3] JM: Kubernetes has become the standard system for deploying and managing
clusters of containers, but the vision for the project goes beyond managing containers. The

long-term goal is to democratize the ability to build distributed systems.

Brendan Burns is a cofounder of the Kubernetes project, and he recently announced an open-
source project called Metaparticle, a standard library for cloud native development. Metaparticle

builds on top of Kubernetes primitives to make a distributed synchronization easier. It supplies
language independent modules for locking and leader election as easy-to-use abstractions in

familiar programming languages.

After decades of distributed systems research and applications, patterns have emerged about
how we want to build these distributed systems. We need a way to lock a variable so that two

nodes will not be able to write to that variable in a nondeterministic fashion. We need a way to
do master election so that if a master node dies, the other nodes can pick a new node to

orchestrate the system.

We know that just about every distributed application needs locking and leader election. So how
can we build these features directly into our programming tools rather than bolting them on or

outsourcing these to another tool? With Kubernetes providing a standard operating system for
distributed applications, we can start to build standard libraries that assume we have access to

underlying Kubernetes primitives. Instead of calling out to external tools, like Zookeeper and
etcd, a standard library like a Metaparticle will abstracts them away, and that's really what's so

exciting about Kubernetes is that you have this standardized distributed operating system, and
you could start to build stuff on that and expect that other people are going to be building on top

of the same standard operating system.

An example is if I'm writing a system to do distributed map reduce, I would like to avoid thinking
about node failures and race conditions, and Brendan's idea is to push those problems down

into a standard library so the next developer who comes along with a new idea for a multinode
application has an easier time.

© 2018 Software Engineering Daily �1

SED 495 Transcript

Brendan Burns currently works as a distinguished engineer at Microsoft and he joins the show
to discuss why it is still hard to build distributed systems and what can be done to make it

easier. This is the second time we've had Brendan on the show. The first time he came on he
discussed the history of Kubernetes and some of the design decisions of the system, and this

episode was more about the future. It's really exciting to talk to Brendan because he has such
ambitious futuristic ideas about where we can take our computing systems.

Full disclosure; Microsoft, where Brendan is employed, is a sponsor of Software Engineering

Daily.

[SPONSOR MESSAGE]

[0:03:16.1] JM: Azure Container Service simplifies the deployment, management and
operations of Kubernetes. Eliminate the complicated planning and deployment of fully

orchestrated containerized applications with Kubernetes. You can quickly provision clusters to
be up and running in no time while simplifying your monitoring and cluster management through

auto upgrades and a built-in operations console. Avoid being locked into any one vendor or
resource. You can continue to work with the tools that you already know, such as Helm and

move applications to any Kubernetes deployment.

Integrate with your choice of container registry, including Azure container registry. Also, quickly
and efficiently scale to maximize your resource utilization without having to take your

applications off-line. Isolate your application from infrastructure failures and transparently scale
the underlying infrastructure to meet growing demands, all while increasing the security,

reliability and availability of critical business workloads with Azure.

Check out the Azure Container Service at aka.ms/acs. That’s aka.ms/acs, and the link is in the
show notes. Thank you to Azure Container Service for being a sponsor of Software Engineering

Daily.

[INTERVIEW]

© 2018 Software Engineering Daily �2

SED 495 Transcript

[0:04:42.8] JM: Brendan Burns is a founder of the Kubernetes project and a distinguished

engineer at Microsoft. Brendan, welcome back to Software Engineering Daily.

[0:04:49.9] BB: Thank you so much for having me. It’s great to be back.

[0:04:52.5] JM: We are at the beginning of some crucial changes in the way software runs, and
I'd like to map out some of the ways that Kubernetes has altered software, and then we'll talk

about what changes are likely to occur in the future. So going a little bit back in history to 2013,
Docker helped solve packaging and deployment in distribution and isolation. It also helped us

think about the bounded context of the different components of our application, but we still
needed an orchestrator. Why was that what? What were the operational problems that were

unsolved where we still needed an orchestrator?

[0:05:30.9] BB: I think there's a couple of different pieces. One is that in sort of packaging
things up and hopefully decoupling them from a specific operating system or a specific machine,

you need something that is been going to go in place that container out on to a machine
somewhere, just like your operating system doesn't prompt you for which core you want to run

an application on. It just finds a core and runs it. We don't want to have to force people to think
necessarily about where their application is running. We just want a system that knows how to

run it for them.

Additionally, of course, as we've moved from applications that are running on individual
machines, to applications that are running in the cloud that are supplying APIs that have always

on availability, we need — Have a much greater need for things like redundancy and reliability
and horizontal scale. So those are all problems that are difficult for a user to figure out how to

solve, but they're all problems that an orchestrator can come along and solve for you.

So in effect, the container packaging is great for the single machine, but the truth is that the
systems that we need to build, support APIs and all was on sites, required distributed systems,

and so you need an orchestrator in order to build and manage the distributed system.

[0:06:48.8] JM: This year at Cube-Con, Kelsey Hightower came out on to the stage and he was
proudly announcing that Kubernetes was becoming boring, and I think he meant boring in the

© 2018 Software Engineering Daily �3

SED 495 Transcript

same way that we think of Ubuntu being boring. You want your core infrastructure to be boring.

What were some of the struggles of getting to that blissful state of boredom that we’re getting to
today?

[0:07:12.8] BB: I think there’s a couple of different things. I think one is that in the early days, it

was a lot of teaching people why they may want this, or I think people, for a long time, their
applications were so tightly bound to the operating system. So tightly bound to shell scripts or

some of the older ways of deploying software that it was almost unimaginable that these things
would be separated, and the orchestrator is that abstraction that separates you from your

operating system, that separates you from your hardware. For a lot of people, I think it was
exciting not because it was inherently exciting, but it was controversial, because it was a

different way of doing things. So I think in some ways we had to set a lot of time talking to
people about how and why they might want to do stuff.

I think there's a lot of listening that had to happen, because if you look at things like replica sets

where everything was homogenous and really had no identity, and over time we listen to the
challenges that people had in deploying stateful applications, like Mongo, into these

homogenous environments. Overtime we develops things like of the stateful set, which sort of
provides a little bit higher level abstraction, a little bit more coordination between various

replicas and it makes it dramatically easier to deploy the stateful application like MongoDB. That
was a compromise position, and I think part of what had to happen overtime was enough people

had to use it, raise up all of the pain that some decisions that were made sort of out of a sense
of API purity or a sense of design purity had to be sort of relaxed and rolled back in order to be

practical and support ease-of-use for the end-user, because at the end of the day if people don't
like it and don’t want to use it, then it’s kind of pointless to build the system.

I think there was also a sense that this area in the software stack was going to be somehow

important at the business level, and I think what we’re seeing is as Kubernetes becomes
available in every single public cloud, for free effectively. It's turning into a commodity, and so I

think there is no longer a sense that people are trying to own the space for their business, but
rather it's just something that needs to be supplied for the things the people build on top.

Certainly, from a cloud, from an Azure perspective, we really view the Kubernetes API as the
beginning of the user experience, not the end of the user experience.

© 2018 Software Engineering Daily �4

SED 495 Transcript

[0:09:37.1] JM: I’d like to talk about some of the ways that people are running applications
today, and perhaps some of the patterns that we’re centralizing on. I know that you have a

desire to see more patterns and perhaps more standardization, because the sooner we get to
some patterns and some standardization, the easier this will become to proliferate. Let's talk

about state management, for example. So for a while we've had this notion of the 12 factor app
and most of our state, we’ve wanted to write to external databases or we write it to an external

Redis cluster, but we don't actually think about managing state within the container itself. We
just think of the container as this thing that can die at any time. Is that changing? Are we going

to a place where the state in the container, we don't need to consider it as ephemeral as we
once did?

[0:10:32.3] BB: I think you certainly don't have to considered it ephemeral, right? I think we do

believe generally and in disaggregated storage, meaning that computer and network big storage
are bound at runtime. You’re not particularly bound to anyone machine. You have a network file

share that you mount into your container and that network file share follows you around the
cluster.

We are seeing in the extreme, some extreme use cases, where local storage becomes really

important. I guess it's always a trade-off. It's like how closely do you want to manage your
storage? If you manage ait very closely, you take on a lot of application level responsibility for

application level sharding and data replication and things like that. That can be really important
if you need the performance that you can get from a very finely tuned stack. But in many cases,

it's way more work than somebody really ought to be pursuing. Then we’re seeing people say,
“Okay. Well, if I just use network attached storage, well it's easier because it follows me around

the cluster and we’re bust to machine failures. Performance might not be quite as good as if it's
local, but it's good enough.

Then I think for a lot of people, using cloud providers, storage as a service, something like

CosmosDB in Azure that provides a Mongo API or a bunch of others, the Cassandra API, where
they carry the pager and they are the ones responsible for all of the DRI. That makes a ton of

sense to me. I have always said to every single team I’ve ever had, like you shouldn't be in the
storage business generally. It's complex. It's hard and usually it's not worth it. Now, sometimes it

© 2018 Software Engineering Daily �5

SED 495 Transcript

is, but most of the time it's not. It’s not a question I guess of what is possible. It's more a

question of what is most efficient for you and your team and the use case and business that
you're trying to build.

I think generally speaking, the less state you keep in the application, the easier it is for people to

build reliable applications, and thus you can sort of have people who are less distributed
systems experts building applications that are robust to a lot of failures. I think an early failure

mode is the sort of like, “Oh! Look how easy it is to stand up Cassandra in Kubernetes. Let's go
to production with that.” It's very hard to measure like the cost of operating something overtime.

We do a good job of measuring like, “Oh, it was hard to set up,” but we don't do a very good job

of measuring, like, “How much is this going to cost me every single week, every single month to
keep this thing up and running, keep it okay?” I would say, generally, I would recommend most

everybody. Especially if you’re in the cloud, use a storage as a service. It's just going to be a
happier path.

[0:13:10.7] JM: Continuing the conversation of data management, how durable does the data in

etcd need to be? And do we need version etcd? Do we need to keep old records so that we
could roll back to an earlier snapshot of our etcd configuration data?

[0:13:29.2] BB: I think there’s a couple of different answers to that question. I think that DRI is

always a good idea, and we’re starting to see tools getting created in that space to do —

[0:13:39.5] JM: What is DRI?

[0:13:40.5] BB: Disaster recovery.

[0:13:41.6] JM: Oh, yes.

[0:13:42.7] BB: Disaster recovery is always a good idea. Like it’s sort of a you — You should
always have multiple ways back. On the other hand, I would also say that you should be treating

the data in etcd as a reflection of something that you have stored in source control. There is no
good —

© 2018 Software Engineering Daily �6

SED 495 Transcript

[0:14:01.0] JM: YAML files or other [inaudible 0:14:03.0] files.

[0:14:02.9] BB: Yeah. There's no good reason to treat the etcd database as the source of truth.
It should be a reflection of what's in source control, because otherwise you’ve lost at some level

the ability to do code review. You’ve lost the ability to have audit trail — Actually, we do have
some degree of audit trail for changes into etcd, but you want the edits to flow effectively from

people editing text files and code reviewing text files and probably running through some sort of
CICD validation system so that you validate that the config is sane before that configuration is

pushed out to the etcd cluster in the Kubernetes, in the Kubernetes cluster, because that’s just
the right practice.

I think you want disaster recovery. You want to treat the data as being relatively important, but I

think that the processes that we should be using mean that you should also have that data in a
bunch of different other environments as well, and that you shouldn't really believe that the etcd

piece is the source of truth.

[SPONSOR MESSAGE]

[0:15:12.2] JM: The Casper mattress was designed by an in-house team of engineers that
spent thousands of hours developing the mattress, and is a software engineer you know what

kind of development and dedication it takes to build a great product. The result is an exceptional
product when you put in the amount of work and effort that went into the Casper mattress. You

get something that you’d use and recommend to your friends and you deserve an exceptional
night's rest yourself so that you can continue building great software.

Casper combines supportive memory foams for a sleep surface that's got just the right sink and

just the right balance. Plus its breathable design sleeps cool to help you regulate your
temperature through the night. Stay cool, people. Stay cool.

Buying a Casper mattress is completely risk-free. Casper offers free delivery and free returns

with a 100 night home trial. If you don't love it, they'll pick it up and give you a full refund. Like
many of the software services that we have covered on software engineering daily, they are

© 2018 Software Engineering Daily �7

SED 495 Transcript

great with refunds. Casper understands the importance of truly sleeping on a mattress before

you commit, especially considering that you're going to spend a third of your life on that
mattress. Amazon and Google reviews consistently ranked Casper as a favorite mattress, so try

it out. Get a good night’s rest and up voted yourself today.

As a special offer to Software Engineering Daily listeners, get $50 towards select mattress
purchases by visiting casper.com/sedaily and using the code sedaily at checkout. Get the select

mattress purchases if you go to casper.com/sedaily and enter the code sedaily at checkout.

Thank you, Casper.

[INTERVIEW CONTINUED]

[0:17:18.0] JM: Are there standards around how many Kubernetes clusters of companies is
going to deploy given different circumstances? Like if I'm a two-person company, probably I only

have one Kubernetes cluster and all my different services are managed in that cluster, but if I’ve
got 100 person company or thousand person company, it’s probably many different Kubernetes

clusters within the company. Is that right? What are the best practices you've seen around how
many Kubernetes clusters a company will deploy?

[0:17:50.2] BB: Yeah, I think it's kind of a trade-off. I mean in some cases, especially in big

companies, you talk to them and they're just not set up to do accounting for a shared resource,
like a shared cluster. They don't know how to do chargeback. So if you turn up a large cluster on

a thousand VM's, well who's thing for those VM's? Also, at the end of the day, what business
unit is paying for those VM's and how do you do chargeback to the various people who deploy

stuff on to that cluster? That's something that is not very well handled, and some companies are
willing to do that, especially if you’re a startup or you’re willing to say like, “We just have

infrastructure costs. We’re going to pay the infrastructure costs and all of our teams use that
infrastructure and that’s the way it is,” and that sort of leans towards one cluster. But if it's

difficult and then in your paying when you run one of these things in the cloud, you’re paying
based more on physical. You’re paying based on the machines that are part of the cluster. It can

be difficult to do the right chargeback, and so people run multiple clusters, because they want to
have a cluster for a team, because that's their unit of costing effectively.

© 2018 Software Engineering Daily �8

SED 495 Transcript

I think the advantages of having a small number of clusters is you can get all of your best
practices into those clusters. Monitoring and alerting is very consistent. If you have a thousand

clusters, it's kind of like having a thousand VM's. They're all going to be snowflakes that kind of
look a little bit different and have you may be different monitoring plug-ins installed or are

running different versions of Kubernetes. The more you have of something, the less consistent
they're going to be, unless you then build automation on top that sort of forces them into

consistency. I think that that’s sort of the trade-off.

Obviously, also if you have multitenant clusters, you need to start worrying about multitenant
security, and Kubernetes has things like RBAC that helps somewhat network policy in RBAC,

but containers are hostile, multitenant secure. So if you have your payments processing system
sitting next to your web UI, maybe that's not comfortable for you and maybe you want to

actually have a separate cluster for, really, private stuff are really important stuff versus the more
utility stuff. So I guess I'm not sure that there's a single best practice. I think there's a bunch of

axes that either lean towards one cluster or lean towards lots of clusters and you kind of have to
figure out where your business and your experience fits on all of those to decide how you do it.

I would go into it intentionally, I guess, is the only other thing I would say. You should go into it

with a plan. You shouldn't wake up one morning and suddenly be like, “Oh gosh! We have fee of
500 clusters around the company. How did that happen?” or vice versa. You shouldn't wake up

one morning and be like, “Oh my goodness! There's like 25 teams on this cluster that I turned
up for my one app and I have no idea how to manage all the resource usage and they are

effectively getting a free ride on my budget,” and that sort of thing. I think it's definitely very
important to go in eyes wide open and decide like, “Are we going to be a cluster per team kind

of environment or are we going to be a one cluster for the company kind of environment?”

The great thing is, with cloud services like Azure container service, it's really easy to turn up
clusters, and so we do see things like people will turn up a fresh cluster for CICD and then just

tear it down at the end of the CICD run. Definitely having your cluster as API is a really useful
primitive.

© 2018 Software Engineering Daily �9

SED 495 Transcript

[0:21:06.8] JM: We had Joe Beda on the show recently and he was talking about how the future

is going to be very plug-and-play, and there is some plug-and-play ability today with things like
Helm and cube apps and it’s becoming much easier to just one click install anything to your

Kubernetes cluster. I know you've talked about making distributed systems as easy to build his
mobile applications. How far is Kubernetes from that world that you would like to see today?

[0:21:38.3] BB: I don’t think Kubernetes is ever going to be taken to that world. I think that we’re

going to build on top. We’re going to build experiences on top of Kubernetes to produce that
world. I don't think we ever — I think to layer that Kubernetes is at right now is the layer that we

want to leave it at. It's in the extensions that we build on top and the systems that we build on
top that sort of power will come from. I kind of always view Kubernetes as the assembly

language of distributed systems. We’re going to build higher-level languages that compile down
to this lower-level assembly language, if you will.

I don’t actually know if you had a chance to take a look at my Cube-Con talk, my Cube-Con

keynote, but I introduced this new system called Metaparticle that I've been working on for a
while. It’s at metaparticle.io.

[0:22:25.2] JM: I didn't see your Cube-Con keynote, but I read your medium post about

Metaparticle.

[0:22:30.5] BB: So this is even newer than the medium post. That's was a part of this. That was
a part of the — But if you go to metaparticle.io, there’s what I would call a cloud idiomatic

environment, which is to say, I think that rather than thinking about deploying a distributed
system being separate from writing a distributed application, we need to start thinking about

how do we actually integrate cloud into our programming languages. I think that what we've
seen over the course of history, if you look at something like locking, locking starts out not really

existing. It's something that you do via a complicated series of assembly language instructions.
There are no locks. It's just you use compare and swap and there's this value that you figure out

and it locks. Then over time, it becomes a library, it becomes POSIX, it becomes a library that
you can link into your application and use so that you don't actually have to understand the

intricacies of the assembly language. Then eventually it becomes a keyword. Synchronized in
Java as a keyword. It's part of the language.

© 2018 Software Engineering Daily �10

SED 495 Transcript

C++ doesn't really understand about locking. It has libraries that you can use to implement
locks, but it doesn't understand locks. Java understands locks at the programming language

level, and I think the same thing will be true with cloud, and I think with Kubernetes we’ve sort of
built out a bit of an assembly language and we’re starting to see some libraries developed, but

eventually this stuff is going to be the sort of thing that you express in a programming language.
You might say something like, “This is a cloud thread, and if it's a cloud thread, I want it to not

run on this machine. I want it to go find a location in the cloud and execute and I better not have
any side effects, because state management in the cloud is hard.

I think that you're going to have to — This int is a cloud integer, which means please store it to a

durable backing store. Please make sure that you do transactional updates. Throw exceptions if
you can't assign a value. Whatever it happens to be. I think that’s the only way we move

forward, and I think we’re going to become come to a world where programs don't just sort of
run on the cloud, programs expect the cloud.

[0:24:36.2] JM: Another example of this type of change of how we would write our applications

might be the intent-based APIs that I've seen you talk about, and this is basically the idea that
you would describe your API requests declaratively. So instead of, for example, saying I want

my application to make a request to a load testing service and have that load testing service
barrage my application, you would have somewhere in your declarative configuration make this

service be load tested as an aspect of the service.

Do you agree with that? Is that a good example of this?  

[0:25:19.7] BB: Yeah, I think that's another example of being able to — I think in general, what
we’re trying to do is build the ability for people to assert things at a higher level. You can

conceptually understand what a load test is without having to understand the details of how that
load test might be implemented. For most people, that's going to help them. If you sit down and

you say, “Gee! I should really load test my app today.” If all you have to do is to find a YAML that
defines the rough properties of what it means to load test your app and it just happens, well,

we’re all going to do that. But if you have to go research like, “Oh, what is the best load testing
framework and how do I configure it and how do I deploy it?” Even if it's a webpage that you

© 2018 Software Engineering Daily �11

SED 495 Transcript

read through and you run 20 different shell commands, that's a barrier to entry and it's not a

very smart barrier to entry, because like what value is it that you learn how to use this specific
load testing framework to run a load test? At some level, you don't care. You just want to see the

results.

I think that's definitely an important part, building abstractions that are at the right level, so that
people can focus on the important aspects without getting lost in the details. In some ways,

that's what programming languages have been doing since the beginning of time. So I think
those developments are going to be crucial over the next set of years as we become more cloud

native in how we build our applications.

[0:26:45.9] JM: So Metaparticle is a kind of another example of this like you said. Basically, as I
understand, Metaparticle is — If you want to make a distributed application today and you want

to have a in-memory storage system and you want to maintain the kind of 12 factor app things
with external storage today, you might use something like Redis, but what you're advocating

with the Metaparticle system is you don't actually want necessarily to make a call out to Redis,
because that's kind of messy. You want to have a language level abstraction where you just like

you have no atomic variables. You would have maybe like a distributed persistent variable. Is
that correct?

[0:27:37.7] BB: Yeah. In general, I think that's an example of what I would say is the broader

goal, which is that you want to write your applications in the cloud and have them look and feel
like they are part of the programming language. Not like they’re an add-on or a library or a thing

that you happen to link in that the programming language doesn't understand. You want it to
look and feel like it is a first class citizen within the programming language, because I think that

it's that important. I think that what — And I think you saw this with synchronization. Like if you
look at all of the major or at least a large number of the major languages that have come out in

the last 10 to 15 years, they all have synchronization as a primitive. There’s channels in Go.
There is the synchronized primitives in languages like Java and languages before then,

because most computers were single core computers and that sort of thing didn't really think
about this very much. They didn't think about multiprocessing. They didn't think about

multithreading. Then all of a sudden in the sort of middle, late 1990s, suddenly concurrency
becomes way more important and languages start having a surfacing of a lot more primitives to

© 2018 Software Engineering Daily �12

SED 495 Transcript

help people deal with concurrency, or like JavaScript where node says like, “It's all event driven.

You’re going to learn this event driven model. There's only one thread. You're going to pass
callbacks all over the place, and then we’ll develop promises and things like a wait in C# and

typescript.” All of these language level stuff to support synchronization.

I think that what you're going to see over the next 10, 15 years is language level support to
support cloud, to support distributed systems, and because it has to, because it's just too hard.

It is just way too hard to build a cloud application. It's too hard to do storage. It breaks the flow.
You've taught someone about storing something in a variable and then suddenly you tell them

like, “Oh no! Actually, variables no longer really exist in the cloud.” Variables are these kind of a
local thing and assigning to a local thing. It doesn't really matter. You need storage system

somewhere in order to actually store that variable. It just doesn't — Why introduce that barrier?
We already have the equal sign? Why are we saying you have to say set instead of using equal

sign? It doesn't make sense. It makes sense, because you understand the history and you
understand where it came from and you understand that things have to go through this

progression. They have to go through a progression from being a library to being a part of the
language, but I guess what I'm trying to say is like we are moving from the, “Hey, it’s a library.

You need to understand how to use,” to “How do we figure out how to put it into the language?”
There are other examples of this. I mean I'm not the first person to talk about this stuff. You can

look at Hadoop as the first example of one of these systems where Hadoop basically says,
“Hey, if you implement these two Java classes, I'll go use a thousand computers on your

behalf.” The person who implements those Java classes doesn't really understand what's going
on. I mean like sort of do, but like not at a deep level. They just know, “Hey, if I implement this

map thing and if I implement this reduce thing, somehow magic happens and my word count
runs in a 100th of the time it took otherwise.

That's usually powerful. That's democratizing that distributed system. In fact I would argue the

big data as an industry wouldn't exist without that kind of abstraction. You're allowing all these
people who aren't distributed systems people to suddenly harness the power of all of these

computers.

[0:31:12.0] JM: Yeah, absolutely, and people build tools on top of those and turn map produce
into a single one-liner command that you just import and use as SaaS service somehow, and in

© 2018 Software Engineering Daily �13

SED 495 Transcript

order to get to that place we needed to have those nice little abstractions to build on at the

bottom.

[0:31:30.0] BB: I think you’ve seen this happen as well. So there’s this paper recently out of the
amp lab, which is in Berkeley, which is actually where Mesos came out of as well. It was called

this system called, the system was called [inaudible 0:31:40.3], and they basically took the map
function in Python and they backed it up to functions, functions as a service. So suddenly

anybody can write a Python map expression can distribute that across functions as a service
and get massive throughput for the computation.

It’s so easy to take teach someone like what that function does, and then if they can just

automatically unlock the cloud to make it run faster, that's a huge win. Again, it's fitting it inside
the contours of the language. You don't teach anybody about functions as a service. You don't

teach anybody about cloud even. You just say like, “Hey, if you use this thing, that little piece of
code that you run will run a hundred times faster.”

[0:32:28.8] JM: And Metaparticle, did you kind of write this like just an example or do you think

this is like an actual project that will have a route into production systems?

[0:32:40.7] BB: The Metaparticle project that I just launched at Cube-Con, which is bigger than
just the storage piece. That actually includes some concurrency. It includes automatic packaging

of the application as a container and deployment of the container to Kubernetes. I don't know if
it will be the system that is the canonical example of this. I think we have to work together a lot

as a community and discuss these ideas. I guess what I'm hoping is that it becomes a place to
build and a place to experiment moving forward, and if in two years we look back at all the

different pieces that we've built and we say, “Oh, you know what? Actually, we can understand
the space a lot better now and having that understanding. We’re going to go build from scratch

a new system and maybe give it a different name.” I'm not going to be sad about that.

On the hand, maybe it will slowly evolve into being the production system. I think these things
take time to evolve, and I mean a lot of languages spend a lot of time with only a few people

sort of playing around with them before they become like the mainstream thing. Java spent two

© 2018 Software Engineering Daily �14

SED 495 Transcript

or three years. It wasn’t called Java when it first came out. Spent a bunch of time with people

kind of noodling on it before it really became a mainstream thing. Maybe that will be the path.

I think what's important is that we have the discussion, and what's important is that we drive
forward with these ideas, because — I guess the other thing I would say is I don't know that

Metaparticle necessarily will be the system that everybody uses, but I am 100% confident that a
system like this will be the way that people develop for the cloud in, say, 3 to 5 years. You just

have to. There’s just too many of these systems that need to be built. It's like imagine the
number of programs that you would have built if everybody — If the only way to build

applications with C++ and like old-school UIs.

[0:34:38.3] JM: Yeah, not so many.

[0:34:39.2] BB: Not so many, rights? Visual Basic, Java, C#, all of these languages that came in
the sort of the mid-90s, when suddenly it was clear like, “Oh, yeah. We need thousands of

applications or millions of applications. We don't need you know a handful of applications.”
These languages were developed to radically increase the number of people who could

successfully build applications. I think what's happened now is it's no longer sufficient to build an
application that runs on a desktop. We have to build reliable cloud applications, because people

expect multiscreen experiences. People expect their data to follow them around. So we’re back
in the world where the number of people who know how to build those things is just too small for

the number of systems that need to be built. As a result, we build bad systems that aren't
reliable, that are hard to maintain, because people don't have the skills. Also, they’re too

expensive. So we see systems not get built, because they're too expensive. We have to make it
easier, and I think that it's inevitable that happen.

[SPONSOR MESSAGE]

[0:35:44.7] JM: If you are building a product for software engineers or you are hiring software

engineers, Software Engineering Daily is accepting sponsorships for 2018. Send me an email,
jeff@softwareengineeringdaily.com if you're interested.

© 2018 Software Engineering Daily �15

SED 495 Transcript

With 23,000 people listening Monday through Friday and the content being fairly selective for a

technical listener, Software Engineering Daily is a great way to reach top engineers. I know that
the listeners of Software Engineering Daily are great engineers because I talked to them all the

time. I hear from CTOs, CEOs, directors of engineering who listen to the show regularly. I also
hear about many newer hungry software engineers who are looking to level up quickly and

prove themselves, and to find out more about sponsoring the show, you can send me an email
or tell your marketing director to send me an email, jeff@softwareengineering.com.

If you're listening to the show, thank you so much for supporting it through your audienceship.

That is quite enough, but if you're interested in taking your support of the show to the next level,
then look at sponsoring the show through your company. So send me an email at

jeff@softwarengineeringdaily.com. Thank you.

[INTERVIEW CONTINUED]

[0:37:12.3] JM: I want to put you on the spot here. The way that I think we've seen people build
platforms on top of Kubernetes so far, it's fantastic, but I think we’re going to see a lot more in

the future. So I think what we’re seeing today is mostly people that are building really nice visual
façades on top of Kubernetes, and then we’re also seeing things like what Cloud Foundry has

done where they’re kind of reworking their core orchestration layer to also expose Kubernetes,
and all that’s great.

You have a background in robotics. I'm sure you have thought a little bit about how Kubernetes

might be used as a distributed operating system for robots or how you could build a platform on
top of Kubernetes to work with robotics. Do you think that would be a use case where

somebody might build something on top of Kubernetes?

[0:38:04.8] BB: I think that there is — I don’t know about robotics necessarily, although I think
we are seeing the increasing mixed mode stuff where devices are offloading a lot of their

computer up to the cloud. Machine learning loads are running in the cloud when possible and
things like that. But I do believe that like we need to — To your earlier question about sort of

either it's a façade on top of Kubernetes or it’s in a full-blown PaaS where Kubernetes is sort of
there as a feature, but it's not really the main focus. I do view Metaparticle and other things like

© 2018 Software Engineering Daily �16

SED 495 Transcript

that as being a standard library. I mean I think that the important way to approach this is to think

about the fact that you have a runtime like the CLR, the JVM, but without a standard library it's
useless. It's not useless, but it's a lot harder right? If everybody just started with object and then

had to build everything on top of object, we wouldn't get very far. We need this standard library
of useful patterns and useful abstractions that in order to build our applications quickly and

reliably, but it can't be a PaaS. It can't be a full-on, like, “This is the only way to do things. We’re
going to be super opinionated.” It has to be more like a standard library that you'd expect, where

I can take the bits that I need and in the places where I don't want it or it doesn't fit, I discard
them and I build my own.

I think building up that layer where it's not — You have consumable abstractions, but that they're

not all-encompassing. I think we have to do that, and that's a part of where I want to see the
community go, is to figure out how do I build a set of reusable modules that I can consume in an

à la carte way? The load test example is a great example. I just want to instantiate a load test. I
don't want to deal with it. Ideally, I want to instantiate a load test in my code. I want to write a

little Java program and run that Java program and have that Java program become the load
test, because that's the way that it's going to become easier for me to — That's my natural sort

of place to express these things. I don't want to have to write some YAML. I don't want to have
to learn about some extra config, learn about some new tool. I just want to describe this thing in

a language that's familiar to me.

I think if you look at like Brigade, which is this tool that we open-sourced recently, which is a
workflow engine for running workflows in Kubernetes. You write your workflow as a JavaScript,

because writing it as a programming language just feels very natural. It feels very familiar to
people. You express the workflow as a simple JavaScript program, but when you run it, it goes

and executes containers in parallel and synchronizes them on a Kubernetes cluster. I think
that's a great example of, again, allowing people to use familiar tools to access the power of the

cloud and the power of a cluster orchestrator.

[0:40:59.8] JM: Another element of the future and also of the present is the idea of cluster wide
services. So we should have things like logging and monitoring and security standardized

across the cluster. Of course, as you said earlier, it's problematic if your organization has 20
different Kubernetes clusters and you can't standardize between the clusters, but let's assume

© 2018 Software Engineering Daily �17

SED 495 Transcript

we’re just trying to standardize within one cluster. Do you think all of these things are going to

be facilitated by the service mesh abstraction, or do you think that the service mesh is just going
to be one of a number of different cluster wide services?

[0:41:40.3] BB: I think it's one of a number for sure. Service mesh is never going to do logging

for you. Not like the stuff that you print out. It's never going to be able to catch a stack trace or
aggregate stack traces to tell you what your most common error is. It’s not going to be able to

understand like it's all based on RPCs and HTTP RPCs generally at that. So there's going to be
all sorts of things that it doesn't understand. If you have a batch system that is processing jobs,

like it's transcoding video say, service mesh isn't going to help you understand your video
transcoding system and why it's running slow or what may be happening or alert if you were

falling behind your workload and you need to scale up.

I think it's a great tool to have. But I think that there's going to be lots of these cluster-wide
services. I mean intrusion detection. There’s just all kinds of these daemons. Like service mesh

is a very active thing. It's like in the middle of your application while your application is
executing, but there's a lot of other sort of cluster level daemons that you would want to run that

are more about introspection, or more about monitoring or certificate rotation. There's lots of
these kind of like utility services that you want people to just be able to opt into that the service

mesh isn't necessarily going to be able — Isn't intended to handle for you, and I think that's
right. I mean we really subscribe. I really subscribe to the UNIX philosophy of lots of little tools

with focused purpose. So I think that's the right way to design these things.

[0:43:10.8] JM: What the design pattern that you would like to see for these cluster daemons?

[0:43:16.5] BB: I think that the pattern that we’re starting to see emerge is — It's twofold, I
guess. There are customer level daemons that you just install as a daemon set as a cluster

owner. Things like intrusion detection, or logging, where I just kind of want them to be like
oxygen. Like I just want them to be there. Like I don't even want the user necessarily to know

that it's there. I just want them to get it automatically whenever they deploy. Then there’s more
sort of like augmenting services, where I'm going to install something that does certificate

rotation. Well, in order to actually do that, well I need the user to put an annotation on their
ingress controller or to — That they want a certificate here and they want it to be rotated. So

© 2018 Software Engineering Daily �18

SED 495 Transcript

that's a little bit more like an example where the daemon expects an input from the user. It's

abstract input. It's not like a very specific thing. It's a high level concept that the daemon then
makes easy to use, but I think those are sort of the two main points of interaction. Either It's just

sort of there and you don't even necessarily notice or you're creating a custom resource
definition object that represents a higher level way of interacting with the daemon.

[0:44:25.5] JM: It's clear that people are developing the open-source implementations of many

of the cloud services that we have seen over the last 10 years, for example, object storage.
Replicated object storage seems like it's going to become a nonproprietary commodity, or it

already has, and it's very easy to deploy an open-source version of an object storage system to
your Kubernetes cluster. What's the future for managed cloud services? If we can build an

open-source version of whatever on — We can build off of Kubernetes, where should the cloud
service providers be focusing their time?  

[0:45:06.4] BB: Well, it’s a mix. I mean, I think that if for some things, Kubernetes is going to be

able to give you exactly what the cloud gave you at a cheaper price point. So I think that like
web services style PaaS, I think we’re already starting to see that shakeout. We’re already

seeing the sort of like traditional PaaS vendors be kind of challenged by container orchestration.

On the other hand, like problems like storage, you got to be at a pretty big scale where it makes
sense to roll your own SRE team. You carrying the pager is almost always better than me

carrying the pager until I can hire five or six people to carry the pager. It’s hard to hire a
fractional person. You can't really have like a 10th of a person to carry pager, and you can't even

really have one person to carry a pager, because they’ll go insane. You need at least four or five
people in order to have a healthy pager rotation, and otherwise people are just constantly on

call, and that's bad.

There’s always going to be a scale point at which the cloud version just makes more sense, and
I think that's just always going to be true. Now, the specifics, like if you could turn up a four 9

storage service in Kubernetes that ran forever and upgraded itself and like just sort of worked all
the time. Well then, yeah, cloud services are going to be under threat. We’re not there yet, but I

suspect we will be eventually, and then they'll provide some higher level or harder abstraction. I
think that's just sort of the natural way things go. I do think that one of the things I would love to

© 2018 Software Engineering Daily �19

SED 495 Transcript

be able to see is I think that we've kind of — In the world of cloud, we've kind of destroyed the

independent software market. Because people expect things to be delivered as a service and
because it is so harden and potentially expensive to the workings of the service, there isn't the

equivalent of like downloading an application off the Internet and running it and getting like a
three of four 9 service out of it, because the sort of thing that you would get with access on your

one workstation in 1990.

I think that we need to be able to create that market again, so that a software team of five
people can effectively sell like the equivalent of software on a CD, where I sell it to you and you

use it and it mostly works and you’d never really feel like you need to call me. If we can do that,
then we can re-create sort of the independent software industry in a way that I think it’s been

sort of under threat in the world of cloud. I think it's a really important thing to do. I think it's a
much healthier world for our industry if people can people can make money as software

developers effectively.

I see Kubernetes as being a big part of that for sure, but I think we need to do more. Another
way to think about this is like, it used to be that you paid attention to the version of the web

browser you ran. Like you are like, “I'm running version 4.5, or 4.7 or whatever,” and then web
browsers just started to auto upgrade and people stopped noticing. They’re just like, “No. I just

have a web browser. I don’t know what version.” I guarantee you, you probably can't tell me
what version of the web browser you’re running.

[0:48:12.5] JM: That's right.

[0:48:13.5] BB: And that's a huge shift, right? I think people forget about kind of how big a shift

that is. I suspect we with Kubernetes, we will get to a place like that with these cloud distributed
applications where it's, “I can download and install this application from you as an independent

software vendor,” and it just kind of takes care of itself. It mostly just works all the time, and it's
not perfect. It's not like the 6 or 7-9’s you’re going to get out of a cloud storage service, but it

gives you 3-1/2, four 9’s at a lower price points and you're happy with that.

[0:48:46.0] JM: Yeah, and you're not paying for subscriptions. You're not paying for support.
You’re paying for a proprietary binary, which is fine because that makes a more clean, kind of a

© 2018 Software Engineering Daily �20

SED 495 Transcript

clean contract that doesn't really exist in today's web applications. But if everybody's on

Kubernetes then it creates a market for people to make these $99 Kubernetes binaries that,
“Hey, I sell this to you. You take it, and that's it. That's the end of our transaction.”

[0:49:16.0] BB: Yeah, and I think that right now the reason people don't do that in the cloud in

general is because like they know that they're going have to operate it for the rest of their lives
and they know that most cost comes from the operations. But if via Kubernetes we can create a

world where actually the cost of those operations go away and the binary itself knows enough
about itself to like deploy itself and work with Kubernetes to scale itself and upgraded itself

when need be, suddenly then people start maybe saying, “Oh, actually. You know what? I'll do
that. $99 for two years’ worth of us key-value store that will just kind or keep itself up-to-date.

Yeah, I’ll do that.”

That’s great, because that means that it creates a business model for a lot of even open-source
startups that I see right now who are kind or struggling, who are kind or trying to figure out like

we really don't want to be in the consulting business, but we’re not big enough to do software as
a service. How do we find a place in the middle? We have to create that place in the middle, I

think, in order for the industry to be healthy. It's something I'm definitely very excited about and
passionate about.

[0:50:20.9] JM: That is so cool.

[0:50:22.1] BB: Honestly, I would say like I think Microsoft is an ideally place. Microsoft has a

really strong reputation for partnering and partnering well and ensuring that our partners can
make money on our platform and being committed to our partners making money on our

platform. So that's one of things I'm really excited about being here, is building that platform
where not only is Azure successful, but actually the partners we work with to provide services on

top of Azure are also successful.

[0:50:48.2] JM: I know our time is short here. I want to ask you a little bit about building a
managed Kubernetes Nettie's as a service offering. So you've been at Azure for a while working

Azure a Kubernetes service. Whenever I talk to people at cloud providers, it so interesting
getting introspection into what it's like to be at one of these giant cloud providers. So tell me,

© 2018 Software Engineering Daily �21

SED 495 Transcript

what is it like to build a Kubernetes as a service offering that is deployed on a massive cloud?  

[0:51:19.4] BB: I think you have to remember that nothing can be bespoke effectively. If there's

a thing that you can automate, you have to automate it, because you may think, “Oh, you know
what? We only have a hundred of these clusters today. It's not that bad if I have to run a script

across all of them,” but next month it’s going to be a thousand, and the month after that it’s
going to be 10,000. You always have to be thinking about how you automate all aspects of what

you do, as well as having the right alerting in place right. I mean, I think that you have to know
before the customer does that there's a problem. That's a big thing. That's extremely important.

So I think those are some of the big aspects of it. It comes with a certain amount of pressure
and scale, but I think that's good. It means people are excited and interested in what you are

doing. I should also say like this is real credit to the team. This is not I felt was sitting in my
basement cranking out Azure container service. It’s a big team effort. I've got a team that's on

call and making sure that it stays reliable, and I’m really grateful to them for doing that. I think
that's the other — The other piece of it is it takes a village to deliver one of these services. It's

not the sort of thing you can kind of do on your own.

[0:52:34.8] JM: What are the subjective decisions that somebody can make, because there's so
many Kubernetes as a service things. What are some of the subjective decisions that you’ve

had to make when designing Azure a Kubernetes service?

[0:52:46.8] BB: Yeah, that’s actually one of the hard things, is that you always go up to a
customer and the customer will be like, “You know what? I totally love your managed service.

Totally love it, but can I just have this one thing over here?” You have to decide like, “Is it worth
it? Is that one feature that this customer wants, is it going to destabilize other users? Is it

something I can operate and sustain?” If 80% of your customers are asking for it, then it's a no-
brainer, but if it's one, it's like, “Well, do we think more people are going — Is this person a

leading edge customer? Are they asking for a feature now that only one person is asking for, but
in six months, everybody's going to ask for it? In which case it makes sense to do it now, get

ahead of the ball, or are they just a snowflake and do they just have this weird —” Sometimes
it's like institutional stuff, like they said, “Well, you have to be on this specific version of the

specific operating system, or else you can't run.” That’s like an IT, central IT dictate. Because of
that, actually we run not just Azure Kubernetes service, but we actually have an open-source

© 2018 Software Engineering Daily �22

SED 495 Transcript

service — Or not service, but an open-source product called ACS Engine, and ACS engine, it

doesn't have an SLA. It's just a tool that helps you stand up Kubernetes clusters on Azure, but
because it doesn't have an SLA and because it's a tool that you use as opposed to a service

that we provide, we can be a ton more flexible. There about helping you craft a solution that fits
your needs and still not have you have to fall all the way back to raw IaaS.

Oftentimes, what would happen before was someone would come in and say, “Oh, I love Azure

container service, but I need this one little exception,” and we’d have to say like, “Well, here's
the manual. Go figure out how to run Kubernetes on Azure.”

With ACS engine, we have sort of a place in the middle where we can say, “Hey, we have all

these tooling. You still operate it yourself. It's still your thing. You might need to actually do some
PR's to the ACS engine to get the things that you need in there.” But it's a middle ground. It's a

place where we can collaborate, and as we improve running it on Azure, we upgrade
Kubernetes from 1.8 to 1.9. People who are using that tool can inherit those upgrades, and it

actually is the core of AKS also. It's just that we — It’s AKS as a subset of the functionality that's
available at ACS engine. And so in many cases we start — A feature starts in ACS Engine and

then we see more and more customer demand, and we migrated into AKS, oftentimes code that
customers have provided. So we’re actually having customer provided code inside of ACS

Engine that that eventually becomes part of AKS. That’s been a really great way to kind of be
able to move across the spectrum from like totally pure IaaS where the customer — We’re not

even involved. The customer is just doing it all themselves, to a place in the middle where we’re
working collaboratively in in an open-source context around some tools, to the full managed

service. I hope by doing that we can hit customers in all the different phases of the lifecycle
there.

[0:55:39.8] JM: Brenda Burns, thank you for coming back on Software Engineering Daily. It's

been great to have you.

[0:55:43.4] BB: Yeah, thank you so much for having me. It was great to chat.

[END OF INTERVIEW]

© 2018 Software Engineering Daily �23

SED 495 Transcript

[0:55:49.1] JM: GoCD is an open source continuous delivery server built by ThoughtWorks.

GoCD provides continuous delivery out of the box with its built-in pipelines, advanced
traceability and value stream visualization. With GoCD you can easily model, orchestrate and

visualize complex workflows from end-to-end. GoCD supports modern infrastructure with
elastic, on-demand agents and cloud deployments. The plugin ecosystem ensures that GoCD

will work well within your own unique environment.

To learn more about GoCD, visit gocd.org/sedaily. That’s gocd.org/sedaily. It’s free to use and
there’s professional support and enterprise add-ons that are available from ThoughtWorks. You

can find it at gocd.org/sedaily.

If you want to hear more about GoCD and the other projects that ThoughtWorks is working on,
listen back to our old episodes with the ThoughtWorks team who have built the product. You can

search for ThoughtWorks on Software Engineering Daily.

Thanks to ThoughtWorks for continuing to sponsor Software Engineering Daily and for building
GoCD.

[END]

© 2018 Software Engineering Daily �24

