
SED 367 Transcript

EPISODE 367

[INTRODUCTION]

[0:00:00.8] JM: Airbnb is a company that is driven by design. New user interfaces are dreamed 

up by designers and implemented for web, iOS, and android. This implementation process 
takes a lot of resources but it used to take even more resources before the company started 

using React Native Native. React Native Native allows Airbnb to reuse components effectively. 
React Native works by presenting a consistent model for the user interface regardless of the 

underlying platform and React Native emits a log of changes to that user interface so that the 
underlying platform can translate those changes into platform-specific code. 

Leland Richardson is an engineer at Airbnb. In today's episode, he explains how Airbnb uses 

React Native, how React Native works and the future of the platform. This was a great episode, 
it's a deep dive into React Native and I think you'll like it. 

If you're curious about finding specific episodes of Software Engineering Daily, I recommend 

checking out our new topic feeds in iTunes or wherever you find your podcast. We have sorted 
all 500 of our old episodes into categories, like business, or blockchain, or machine learning. 

We've got a greatest hits feed that I endorse strongly. It's got all of the curated best episodes. If 
you have trouble finding the episodes to listen to, like many people, that's why we made these 

topic feeds. Whatever specific area of software you're curious about we have a feed for you and 
you can check the show notes for more details. I would love feedback on this if you have more 

ideas for what we can do to improve. Send me an email, jeff@softwareengineeringdaily.com.

[SPONSOR MESSAGE]
 

[0:02:01.0] JM: To build the kinds of things developers want to build today, they need better 
tools, super tools like a database that will grow as your business grows and is easy to manage. 

That's why Amazon Web Services built Amazon Aurora; a relational database engine that's 
compatible with MySQL or PostgreSQL and provides up to five times the performance of 

standard MySQL on the same hardware. 

© 2017 Software Engineering Daily �1



SED 367 Transcript

Amazon Aurora from AWS can scale up to millions of transactions per minute. Automatically 

grow your storage up to 64 terabytes if need be and replicate six copies of your data to three 
different availability zones. Amazon Aurora tolerates failures and even automatically fixes them 

and continually backs up your data to Amazon S3 and Amazon RDS fully manages it all so you 
don't have to. 

If you're already using Amazon RDS for MySQL, you can migrate Amazon Aurora with just a few 

clicks. So, what you're getting here is up to five times better performance than MySQL with the 
security, availability, and reliability of the commercial database all at a 10th of the cost. No 

upfront charges, no commitments, and you only pay for what you use. Check out Aurora.aws 
and start imagining what you can build with Amazon Aurora from AWS. That's aurora.aws, A-U-

R-O-R-A.A-W-S.

[INTERVIEW]

[0:03:40.4] JM: Leland Richardson is a software engineer at Airbnb. Leland, welcome to 
Software Engineering Daily.

[0:03:44.8] LR: Thanks for having me. 

[0:03:47.0] AS: Today we’re going to talk about React Native and cross-platform development 

and some of the technologies that you've been building at Airbnb. Let’s start off with the 
canonical question of cross-platform development, which is — Airbnb has to be written three 

times for web and android and iOS or at least it did prior to starting to work with React Native. 
How did this process work before React Native? For the companies that are out there that are 

still writing web and android and iOS apps to maintain cross-platform capabilities, what are they 
doing and what breaks down in that process? 

[0:04:31.0] LR: Most companies kind of have those three targets. You have web, android and 

iOS. Some might have additional targets, like a desktop app or Windows phone, things like that. 
What you find is a lot of times when you're writing these clients for different targets that you’re 

actually writing more or less the same code every time, but you can’t share that code because 
you're using different technologies differently and things like that. Airbnb, like pretty much every 

© 2017 Software Engineering Daily �2



SED 367 Transcript

other company, has been in that position and still for the most part is. React Native is starting to 

change that a little bit. 

Just to be clear, Airbnb is not 100% written in React Native. It’s still a pretty small minority of the 
product that's written in it. Right now, we use React Native for just iOS and android cross-

platform development and we’re starting to explore using it for web as well. 

[0:05:41.5] JM: What are the problems that arise when this engineering process is siloed by 
platform? 

[0:05:50.1] LR: Yeah, that's a great question. I think a lot of people view it as just sort of the 

way things are and the way things ought to be. It’s just kind of been that way for so long. We've 
had some other cross-platform technologies, but for the most part people have kind of come to 

terms with it. They usually just don't work all that well. 

A lot of what can come up with that, until recently, Airbnb was — We kind of had these product 
teams that worked on specific product silos. You might have one team that works on payments, 

another team that works on search, things like that. The way that traditionally kind of worked out 
was those teams that the product engineers on those teams were either back-end engineers or 

front-end web engineers. Then we would have individual android and iOS teams. 

You ended up having this really big communication problem where we didn’t have enough iOS 
or android engineers to kind of spread them across the whole organization, but they still kind of 

needed to build the whole product. You ended up having a lot of sort of first-hand knowledge 
that the web engineer might have that would have to then get transferred to the iOS and android 

engineer and it resulted in, basically, a lot of features that weren't fully implemented on the 
native apps or at least some sort of lag in terms of when they would get implemented. You 

essentially have the whole organization kind of fighting for these limited native engineering 
resources. 

[0:07:35.2] JM: When React Native Native first came out, it did not claim to solve the problem 

of siloing, but it did offer some improvements in communication and information sharing and 

© 2017 Software Engineering Daily �3



SED 367 Transcript

cured some of the process of this cross-platform disaster. Overtime, it's gotten better. Explain 

how React Native changes the development process for cross-platform developers. 

[0:08:05.7] LR: Yeah. When React Native first came out, the kind of tagline they chose was 
learn once, write anywhere, which is sort of a play on the kind of the Java, historical Java 

timeline which is like write once, run anywhere. The idea they were trying to kind of say like, 
“Hey, we’re not trying to do that exactly. That what we’re saying is we have this kind of 

paradigm, this way of writing UI and writing applications which is essentially the JavaScript and 
Reacts stack, if you.” 

Basically saying, “We can take that and can we write each application in that stack or in that 

paradigm even if we might have to write it twice or three times or whatever,” that because we’ve 
only had to — Because we’re using the same stack every time, we’re able to share the same 

kind of engineer to do that. You can have the same person implementing it in all three areas and 
they might have all of the product context of how to build that application and things like that. 

Initially, that was kind of the selling point and I think that that worked out really well. What's 

really interesting though is you have this effect where before you had — You maybe wrote it 
three times, but you had three different engineers writing it then or the people writing it for iOS 

weren’t the same people writing it for android, weren’t the same people writing it for web. 

Once those start to become the same people, then all of a sudden the sort of pain of that 
duplication starts to feel all the more real. You start writing on web and you start writing it on iOS 

and android for React Native and then you realize just how similar those two applications are 
and you realize that there aren’t — The number of kind of differences that you bake in, do to the 

platform, in a lot of products is actually incredibly small. It’s just the technology that you’re using 
that ends up making the code different. 

Once you make the technology stack same, it starts to kind of eke at your inner engineer that 

doesn't want to repeat the code that you’re writing all day. You kind of get this interesting effect 
where you're doing less work than you were before, but for that individual engineer it might 

actually feel more painful. 

© 2017 Software Engineering Daily �4



SED 367 Transcript

[0:10:52.7] JM: What you’re describing is when a company like Airbnb goes from writing the 

app on native iOS, native android, and React on the web or any JavaScript framework, really, to 
a place where they’re writing a React Native app that can basically be deployed to iOS and 

android and building a React app on web, you go from three platforms to two platforms. That's 
good, but the downside is it lets you identify just how inefficient things are. 

[0:11:32.9] LR: Yeah, exactly. 

[0:11:33.6] JM: Right. At this point, you would have React Native, React Native that suits iOS 

and android you you’ve got React and JavaScript on the web. What’s the difference between 
those two environments? Why can't I just port my code easily from one to the other? 

[0:11:56.4] LR: Yeah, this is a problem that I’ve been kind of focused on and thinking a lot about 

lately, but the differences end up being really important but really subtle. You can kind of identify 
that the code you’re writing is effectively the same, like in the way that you care, but you can't 

just kind of copy and paste things over and rename things. It’s not quite the same. For 
application logic, maybe a lot of it is, but for UI logic you end up in some places where you don’t 

realize how you're depending on the platform. 

Typically, when you write a React web application, you're kind of directly targeting HTML, and so 
your React components are going to be rendering directly. They’re going to be returning these 

HTML elements like div and span and H1 and H2 and things like that. 

What’s interesting about React Native or about React is that you're not actually using the 
browser APIs when you're writing those components but you are targeting them. That div or 

span in your JavaScript code is actually just a string, but that string is eventually going to turn 
into a div on your actual website. In the React Native world, you don't work in div and span and 

H1s, things like that. They have a different set of primitives, like view and text and image and 
there are a couple more, but those are kind of the core UI primitives. 

The UI primitives for React Native feel very similar to the ones on the web, but there are a 

couple of important differences. One of them is the layout algorithm. When you start writing divs 
and spans or views and texts, you're implicitly relying on the way those things get laid out very 

© 2017 Software Engineering Daily �5



SED 367 Transcript

intimately and it's very important for building the actual UI that you want to look at later on. 

React Native early on shows to implement Flexbox; a subset of the full CSS spec that the web 
builds. You have access to the Flexbox layout algorithm on the web, but it's not the default 

algorithm. 

React Native kind of works on this subset of CSS. If you want to write cross-platform code, you 
have to essentially build the equivalent of these React Native primitives that have the same 

constraints that the ones in React Native do. You then sort of constrain yourself to using the 
Flexbox layout algorithm which actually is a very nice layout algorithm. It’s a little bit newer in 

the web spec, and so it's not used as often, but it covers a lot of things, like a lot of UI 
paradigms that used to be very hacky and hard to do are very easy to accomplish with Flexbox. 

[SPONSOR MESSAGE]

[0:15:23.5] JM: Artificial intelligence is dramatically evolving the way that our world works, and 

to make AI easier and faster, we need new kinds of hardware and software, which is why Intel 
acquired Nervana Systems and its platform for deep learning. 

Intel Nervana is hiring engineers to help develop a full stack for AI from chip design to software 

frameworks. Go to softwareengineeringdaily.com/intel to apply for an opening on the team. To 
learn more about the company, check out the interviews that I’ve conducted with its engineers. 

Those are also available at softwareengineeringdaily.com/intel. Come build the future with Intel 
Nervana. Go to softwareengineeringdaily.com/intel to apply now.  

 
[INTERVIEW CONTINUED]

[0:16:19.5] JM: So, then what's the current status of bridging that gap between my React 

Native for iOS and android app and the React app on the web? Is the current status quo good 
enough to bridge that gap? Is this a problem that’s going away? 

[0:16:40.0] LR: I think it really — At the moment, I think it depends maybe on your use case and 

what sort of browser support you need and what your sort of constraints are. Right now, there’s 
a library that's written by Nicholas Gallagher from Twitter called React Native Web, and it’s 

© 2017 Software Engineering Daily �6



SED 367 Transcript

essentially a set of the React Native APIs that React Native exports implemented for the web. 

Among those are what I sort of call the primitives and are sort of I think the most important ones, 
which are you view text image, style sheet, touchable and animated. We don’t really have to 

know exactly what all of those do, but you can build most interfaces with just those 6 primitives. 

React Native web does a great job of implementing these on the web and actually Twitter Lite, 
the new PWA that Twitter put out for mobile twitter.com is built on top of React Native Web. This 

is being used and sort of production scale in some places. 

You should be very aware of like there are some performance implications to using these 
primitives relative to just using like div and span directly and that Nicholas and other people in 

the community, like me, are sort of currently working on trying to tighten that gap in terms of 
performance and kind of remove that as an issue. 

[0:18:17.2] JM: Are there runtime performance issues? 

[0:18:20.0] LR: Yes. 

[0:18:20.9] JM: Okay. 

[0:18:24.3] LR: Oh, sorry. 

[0:18:24.5] JM: No. No. Go ahead. You want to talk about them a little bit? 

[0:18:27.4] LR: Yeah. I was just going to say. I think that more and more, there's an importance 

of the ability to keep your JavaScript bundle small. The JavaScript parsing execution times of 
like old android phones is really bad. 

So, I think with frameworks like this, especially where the typical use case for a React Native 

wet at the moment might be for writing actual mobile websites, and so it's pretty relevant to keep 
those times as fast as possible. I think that there is still a lot of improvement that can be made 

there, but I'm pretty excited for where it’s headed. 

© 2017 Software Engineering Daily �7



SED 367 Transcript

[0:19:14.0] JM: To clarify what we’re talking about here, I think we should go into a discussion 

of React Native APIs and what that actually means. There's all these different APIs that you can 
use in React Native and I know that you wrote a script to find the most frequently used APIs. I 

know you found thse seven APIs that you mentioned were the top ones and they accounted for 
something like 85% or something. I guess before we go there, we should about that even 

means. What is a React Native API? 

[0:19:50.9] LR: Yeah. There's a JavaScript library called React which is one of the 
dependencies of React Native, and so React Native and React or not like siblings of one 

another. React Native is kind of an all-encompassing framework. Whereas React is just a 
JavaScript library that React Native itself depends on.

You can look at React Native as a set of APIs that you can use in JavaScript to target like native 

apps. The actual JavaScript that's running is run in a JavaScript virtual machine that's actually 
running on your device, like in the app. That JavaScript is then communicating with simple 

message passing across what we call the bridge in React Native, from the JavaScript's context 
into the native context. That communication layer kind of amounts to all of all of APIs that you 

would typically need to build a mobile app. 

React Native itself has tried to kind of build these small APIs for every — Not every, but for a lot 
of the typical app use cases. Sometimes that's like a UI thing, like view and text are some of the 

UI components, but there's also things like switch and text box, scroll view, things like that. 
There’s also non-UI components, and so there's a network information API. There is an 

internationalization API. There's a geo-location API. There's a network layer. There are things 
like that that aren’t really React related, but they’re just APIs that React Native exposes to you 

by default. 

[0:21:56.9] JM: We should clarify here how React Native and JavaScript are running on, for 
example, iOS. People think of iOS typically as swift code or Objective-C code. For React Native, 

there is this bridge to getting to be able to interoperate with an iOS app, for example. We’ve 
done a lot of shows about this, so people can listen back if they want to hear about this 

discussion in more detail. Maybe could give an overview for — Before we go back to the React 

© 2017 Software Engineering Daily �8



SED 367 Transcript

Native APIs, in particular. How is React Native this thing that interacts with a traditionally swift or 

Objective-C app in the case of iOS? 

[0:22:47.9] LR: Yeah, sure. On iOS, it's actually pretty easy. Apple actually includes in the 
operating system a JavaScript core API, and so when I say JavaScript core, what that is is a 

JavaScript virtual machine, a JavaScript runtime that Apple has made on top of WebKit. That's 
packaged with the operating system. If you're writing an app, you can instantiate an instance of 

JavaScript core and you can inject JavaScript's code into it and it will run. That's essentially 
entirely how React Native works. They’ve built what we call the bridge which is essentially just a 

message queue, a bidirectional message queue across this JavaScript core interface where you 
can injects objects into — Or messages into the JavaScript runtime and then the runtime can 

pass messages back to the native runtime. They’ve essentially created a very lightweight 
protocol to turn those messages into actual commands that resulted in UI and in things being 

drawn to the app and doing actual native things. 

[0:24:15.0] JM: When I write a component for React Native, what's happening is that 
component is getting, I guess, processed by that JavaScript virtual machine and then its 

passing messages over that bridge to the native code, I guess? 

[0:24:35.5] LR: Yes, this is actually I think one of the more innovative kind of pieces of the 
React  JavaScript library that maybe people don't quite get if they’re just casual React users. 

React is a way of building up your application as a set of components that are essentially 
functions that take in a set of props, like some data and then output a description of what the 

corresponding UI might look like provided that data.

It's important to understand that that literally is just a description, so it's not the actual UI. It's just 
turning this UI into serializable data and then the React library looks at that data. This data, a lot 

of people refer to it as the virtual DOM. 

The React library itself looks at any state in time. It looks at this data and compares it to what it 
looked like earlier and finds the differences. Whenever there are differences, it turns that into a 

command. A command would be like a create view, or update view, or add child, remove child, 
move child, things like that. Those commands are essentially like a serialized list of instructions 

© 2017 Software Engineering Daily �9



SED 367 Transcript

and that kind of works that way in React web for the browser, but it turns out that you can — 

These instructions are pretty much generalizable, and so you can instead take these 
instructions and pass them to an iOS application and have them create UI views and kind of 

instrument the view with those instructions instead of browser, like DOM elements. 

[0:26:36.1] JM: Basically, an event log of changes to a UI and it's basically platform agnostic 
because you just have event log of changes that should be made, and whether those changes 

are being communicated to an android client or to an iOS client or to a web client or to a VR 
client, you have the same sorts of operations that you want to do and you leave it to the 

underlying platform to translate that event log into actual UI. 

[0:27:16.3] LR: Exactly. 

[0:27:18.7] JM: Okay. That settles for me the decoupling, because then, okay, we’re just talking 
about like what are you wanting to do at the Reacts native layer to best create this event log of 

stuff that's going to turn into native UI components. We’ve got the seven fundamental APIs that 
we’re going to build a user interface through. You got components, layout, interaction, 

animation, and branching. Wait, I’m sorry. No, those are — Sorry. Those are the —I should have 
said this more clearly. Okay. You’ve got the seven APIs and then you categorize them, you 

informally categorize them as APIs that fall into the category of either components or layout or 
interaction or animation or branching, these different like kind of adjectives that you want to 

classify these APIs as. 

Maybe you could talk again about the seven APIs and why you classify them in these in these 
different ways and kind of how they fit into these different classification. I should emphasize, I 

think these are informal classifications that you’ve basically kind described them as. 

[0:28:31.5] LR: Yeah. Maybe — I don’t know if we’ve kind of explicitly said it, but the seven APIs 
we’re talking about are the APIs that I've kind of dubbed as the primitives. Released to a library 

called Reacts Primitives that has these seven APIs. It's important to understand that this library 
called React Primitives is kind of just an interface. It's just a concept. There's actually — In that 

library, there is no implementation. 

© 2017 Software Engineering Daily �10



SED 367 Transcript

What I’ve tried to identify is that the real trick here is really just identifying what the valuable 

primitive interfaces are and what they actually represent, because React kind of does the hard 
part of really decoupling this entire application code from the underlying platform. Now that we 

have that decoupling, React Native is a really good example of these core APIs being 
implemented on two relatively dissimilar platforms; iOS and android, but allowing them to 

achieve like very very similar results. All we've done or all Nicholas Gallagher with React Native 
Web has done is created that same interface for the web as another platform. 

I think of the web as just another platform. I think that there are many more. Some that we may 

not even have invented yet, but maybe invented in coming years that I think this could be an 
important concept for. 

[0:30:21.6] JM: I think one way to illustrate the importance of the concept is that in computer 

science classes, if you take them in college — Actually, if you go to a coding boot camp too, you 
learn about these core data structures, like linked list, or array, or hash map. We've kind of like 

settled on these core primitives that we use to build application logic, and like those haven't 
really changed much in a pretty long time. Everybody uses hash maps. Everybody uses linked 

lists. Everybody talked about the trade-offs with these things, but we never really had a good 
way of talking about UI, like kind of a hierarchy and it seems like where we’re going with — You 

identified this well in these seven APIs. These are the seven API primitives that you're going to 
build your rich interfaces with. Much like whatever platform you’re your building for, you’re going 

to use hash maps. 

[0:31:20.5] LR: Yeah, that's a really great analogy. Yeah, I think it hits it right on the nose. The 
way I kind of came about this is like I don't want like seem like I'm just this academic who said, “I 

think these are the primitives.” 

In reality, it's React Native that kind of went through the hard work of choosing them, but React 
native is massive. There are like 73 APIs that React Native exports. When I started building 

applications with React Native, something kind of emerged from it which was the realization. I 
created a pretty expansive component library for Airbnb, like roughly like 100 components or 

something and I realized that at end of it, I almost only used those seven APIs. There was very 
little else that I used at the core, like React Native export level. Those APIs end up being view, 

© 2017 Software Engineering Daily �11



SED 367 Transcript

text and image which are all React components that for people listening that are kind of used to 

the web, you can think of them as loosely corresponding to div, span and image. 

Then the other like kind of really important UI primitive is style sheet which is essentially the 
layout algorithms. You can think of style sheet as a proxy for the Flexbox layout algorithm and 

as a way for defining styles that end up being passed into these core UI components of view, 
text and image. 

Those are kind of these four pieces of UI that are really important. Then there is a — You need 

user interaction, right? At that point you can kind of describe static UIs, but you need some way 
for the user to interact. A powerful kind of abstraction around that I came up with was this idea of 

touchable, and touchable is like —I'm actually considering renaming it to Pressible, but it’s just 
— In React, you can wrap things with this Pressible component and then they become 

interactible. You have things like an on-press and on long present and things like that that you 
can get out of it. 

Touchable actually has an animated kind of interface to it. You get this kind of animated effect 

going from un-pressed to pressed and that that is part of a dependency to an API called 
Animated, which is one of React Native’s core APIs that is a really really elegant abstraction 

around animations that has a declarative interface that works really really well with React. That's 
an API that I've also chosen to be included because I think animation is becoming more more of 

an important kind of primitive part of UI design and this does really a good job of it I think. 

Then there’s kind of like one last API which is platform which I don't even really think of it as a 
primitive. I think it’s just a utility and it’s just sort of a practical utility to be able to branch some 

logic based on platform, which is inevitably needed not certain times. That's one of the ways 
that React Native allows you to branch by platform, but there's another way which isn’t an API 

per se but is just the way the packager in React Native works where you can have files with 
different extensions on them. I call them platform extensions. You can have a component, like 

button or something, and so you could have a button.js. If you want it to have a different 
implementation on iOS, you could have a button.ios.js. This is just a very simple way to take 

modules and have an interface that's the same across all platforms but with drastically different 
implementations that kind of allow the developer to very clearly demarcate those lines. 

© 2017 Software Engineering Daily �12



SED 367 Transcript

[SPONSOR MESSAGE]

[0:36:10.0] JM: Spring is a season of growth and change. Have you been thinking you’d be 
happier at a new job? If you’re dreaming about a new job and have been waiting for the right 

time to make a move, go to hire.com/sedaily today. 

Hired makes finding work enjoyable. Hired uses an algorithmic job-matching tool in combination 
with a talent advocate who will walk you through the process of finding a better job. Maybe you 

want more flexible hours, or more money, or remote work. Maybe you work at Zillow, or 
Squarespace, or Postmates, or some of the other top technology companies that are 

desperately looking for engineers on Hired. You and your skills are in high demand. You listen to 
a software engineering podcast in your spare time, so you’re clearly passionate about 

technology. 

Check out hired.com/sedaily to get a special offer for Software Engineering Daily listeners. A 
$600 signing bonus from Hired when you find that great job that gives you the respect and the 

salary that you deserve as a talented engineer. I love Hired because it puts you in charge. Go to 
hired.com/sedaily, and thanks to Hired for being a continued long-running sponsor of Software 

Engineering Daily. 
 

[INTERVIEW CONTINUED]

[0:37:40.4] JM: Right. What’s worth pointing out here is that at least today or when I last 
reported on React Native in detail, there's a number of instances where you're going to want to 

specify stuff about the platform that you're hitting. That's why it's not just like write your React 
Native app and it magically works on iOS and android. There’s certain ambiguities to — When 

we talk about that event log, there are certain ambiguities where there’s an event that is going to 
cause a change to the virtual DOM, that event might have some ambiguity on specific platforms. 

The idea of platform extension would resolve that ambiguity. You could probably explain this 
better than I could. If I'm unifying my app across web and mobile, what role do platform 

extensions play? 

© 2017 Software Engineering Daily �13



SED 367 Transcript

[0:38:37.3] LR: I think platform extensions are maybe the most important aspect of all of these. 

The primitives themselves that I've identified are themselves possible only because of platform 
extensions. I’m just using an interface that I want to make very clear and I think it's an important 

interface. Basically, I'm choosing that interface and then implementation for each platform is 
completely different in plantation, but the public APIs is identical. 

That's a powerful way to build things like kind of the bottom of the tree, and so you create these 

common interfaces at the bottom of the tree and kind of — Then on top of that, you have this 
like pallets of cross-platform components that you can work with. Actually, it's really important at 

the top of the tree too. 

A lot of people, when I start talking about this, their immediate gut reaction is like, “Well, I don't 
want my iOS app to look the same as my android or the same as my website,” and that's like 

totally fine. I think it's really important that this kind of flavor of cross-platform development is it's 
opt-in. You can only share what you want to share and not share what you don't want to share. 

You can have different entry points per platform and you could start off with two completely 
different code bases. You could implement both apps completely separately. They might be in 

the same repo, in the same folders or whatever, but they could have a completely separate, like 
zero intersection implementations. 

Then you might realize like, “Hey, over here, we built this one component and over here we 

build pretty much the same exact component.” Because there aren't any — Because you're 
using the same stack, the same platforms, there's no issues with just deleting one of those files 

and using the one. You can just do that, and then you start to realize that, “Oh, actually, a large 
chunk of my application is the same,” but there may be really important differences that you 

want to preserve. 

On iOS and android there are things like the navigational model is often quite different. People 
on android maybe want like a slide out drawer. People on iOS maybe wan some tabs. Maybe 

you want a bottom right to material UI, circular cerate button or something, but you don't want 
that on iOS. Lots of those decisions are perfectly valid decisions to make. 

© 2017 Software Engineering Daily �14



SED 367 Transcript

It's important to know that like that's all completely possible here. You can you can make things 

as different as you want or as the same as you want. The point is that there is no longer this 
artificial barrier from sharing code that's there only because you're using different technologies. 

[0:41:53.7] JM: I saw a really good demo that illustrated this that you gave at that React Native 

Europe Talk that I’ll put in the show notes, by the way. The demo was like a VR — Like you’re in 
VR and there's just like what looks like a smartphone interface floating in VR. It’s just like, 

“Okay, I could see the thrust there.” Like, “Okay, VR is not exactly the same.” You don’t 
necessarily want the same paradigms,” but might as well be able to slap your smartphone UI 

code into a VR app. There’s no reason why that should be complicated, and React Native 
allows that. 

This is interesting, because there's a lot of React Native stuff that’s been written at this point and 

VR has not gotten super popular. It’d probably get popular eventually. People will want an easy 
way to port their code to it and that I can see React Native naturally. People who had written 

React Native apps at that point will have a nice time adjusting to that. I know React Native VR 
has been created already. 

I kind of want to just — For a thought experiment and just to kind of hear your thoughts on this, 

like everybody is getting into AR. Everybody is rebuilding their AR platform. Apple released an 
AR kit already and eventually we’ll have glasses that we can see AR components. I know this is 

pretty speculative, but I'd love to know what would be the process of — Just to like walk me 
through how somebody writes a bridge between React Native and a new platform, because 

when a new platform comes out — Or we could even be talking about React Native for cars or 
whatever that would mean. 

What is the process for writing — For getting the bridge necessary to hit a new platform? I think 

AR is a good example, because AR looks somewhat like the platforms that we deal with today. 

[0:44:06.7] LR: Yeah. It could be more or less involved depending on kind of what you're able to 
do on whatever platform that that lives on. If the platform that that runs on can run C++, for 

instance, then it's probably not — That in and of itself kind of saves you a lot of trouble, 
because, one; most of the JavaScript runtimes are C++ based. You could throw in JavaScript 

© 2017 Software Engineering Daily �15



SED 367 Transcript

core and then run it on with C++. Then React Native now itself is built on a cross-platform C++ 

bridge. You can actually have the bridge implementation too sort of for free. 

Then once you have that, you basically have — The environment that your JavaScript code is 
going to run on and then you have this like kind of message implementation. Then once you 

have that, basically what you would need to create is part kind of the world — What in React 
Native we call the native modules. You would want to create like an implementation of the view 

and of the text and things like that and. Once that kind of comes in, you need to start 
interpreting these commands that I was calling them earlier. React Native has some kind of 

interfaces that are already defined that you would probably want to implement as well. There’s 
one called UI manager, and that sort of is the React Native like renderer on the native side that 

kind of starts instantiating views and things like that. 

A big part of that in particular is the layout algorithm. Again, this is another thing that's kind of 
been done for you. You have yoga now, which is a C++ library that Facebook has put out which 

is the Flexbox algorithm. With that, you have to kind of wire that up to whatever view system 
you'd be using. If this was like a new platform, it might have a new way of laying out views. You 

would need to — Tell Yoga how to kind of traverse that view hierarchy and then things like 
measuring texts are really important there, is you need to expose a method of text 

measurement and like intrinsic sizes of views and things like that. 

That's like in a nutshell the — That is like what the renderer. That is what React Native is, is kind 
of those things being set up. It’s like a set of native modules. One of them being the UI 

manager, which is a really important one that ends up orchestrating layout with the usage of 
yoga. Pretty much all of that — Anything below that is like already done for you in C++ which 

most like environments that you're going to dream up like probably have some C++ capabilities, 
but some don't. The web is an example of one where we don't really have the ability to run C++. 

You would want to implement those things on the web, but like Yoga for instance can be 

compiled to JavaScript via asm.js. That algorithm can be run on the web which this is how — 
This is how React VR works, actually, because React VR is actually browser-based. It uses 

WebGL and 3GS, but actually runs in JavaScript. The code that is in React Native, like running 
with native code, like Objective-C and C++ in React VR land is just JavaScript. 

© 2017 Software Engineering Daily �16



SED 367 Transcript

[0:48:14.9] JM: The web assembly route is where C++ runs. C++ gets compiled or transpired, I 
guess, to this small subset of JavaScript functions and then that code can run on the browser. 

You’re saying that’s how web VR works? I’m sorry. React VR? 

[0:48:36.7] LR: Yeah. React VR doesn't use web assembly, but it could in the future. It uses 
asm.js, which is just a protocol that some browsers implement that if valid JavaScript is written 

in a certain way, then it will essentially execute it as — It will like kind of parse it as C++. I guess 
it’s not C++. It will run it as bytecode, I guess, and it’s like extremely fast. There's no dynamic 

types or anything like that in asm.js. If it de-ops into normal JS, then it would still be like a valid 
JavaScript program. 

[0:49:25.1] JM: It seems like if the requirements for building a good underlying system that 

React Native can run on top of, the requirement to basically run C++, which is like any operating 
system. When we talk about like the future, I mean it seems like we basically got a new 

operating system and it's going to be a cross-platform thing and it's like, “Cool.” All of a sudden 
Facebook came out with this thing that's going to sneak up on us and be like the new — Right 

now, React Native apps, it’s just basically like having to form fit the current generation of mobile 
operating systems that developers are kind of fed up with dealing with these two platforms and 

having to deal with the web also and it’s just like — It seems like React Native kind of cures all 
of that. 

Assuming React — And I know you have high hopes for React in the future. I saw that quote 

about Guillermo Rauch talking about how we’re going to exploring React Native and React for 
the next decade or the remainder of this decade at least. Have you thought about what is the 

optimal underlying substrate that React would be running on top of? Because surely it's not like 
this alien operating system that React has to bolt itself on to. 

[0:50:56.5] LR: Yeah. It’s important to not underplay the role of like the platform here still. I 

guess the actual implementations of things like view and text and image and things like that, 
that there's a lot there. We’re actually — React Native is really bootstrapping itself on top of an 

already fully rich UI system that is UI kit on iOS and is like the android view system on android 

© 2017 Software Engineering Daily �17



SED 367 Transcript

and is the DOM on the web. Those things are not simple and there’s still a lot of work going on 

there. 

I think it is a really compelling kind of line to draw in the sand where you could be a company 
that said like, “Hey, we’re going to build as much as we can kind of above this line with this 

interface.” I think that that could afford a company a lot of — It's kind of like a nice head. If you 
want to enter into a new platform, all of a sudden it's maybe not that hard. If you want to make a 

play in like the VR space and you actually didn't have to rewrite a bunch of your application to 
do that, but you could rewrite like a very select portion that you want it kind of utilize the new 

features of that platform. That's a really compelling story, I think. 

If there’s something new comes along that kind of changes things dramatically and looks like it 
could be the future but you're not sure, it's really nice to not have to feel like you're really 

clinging on to this platform of the past and that you could just build these primitives so to speak 
and kind of already have this pretty rich experience to start off with, like relatively small 

investment. I don't think that that's like the reason to use React Native or react primitives or 
whatever, but I think that that's like a really interesting aspect of it. 

[0:53:14.2] JM: Okay. It's been really fun talking to you and we barely scratched the surface of 

this stuff I wanted to get to. There’s a lot of other material people might have seen or heard 
about this thing, React Sketch app that we didn’t get to today and I know you’ve also got — I’m 

sure you could have said some interesting stuff about GraphQL, but people can check out that 
stuff in the show notes and maybe we can do another show in the future. This is really fun. 

[0:53:41.4] LR: Yeah, sure. I am happy to talk anytime about those things. There is probably 

another shows worth of stuff there. 

[0:53:50.8] JM: Absolutely. Cool. Leland, thanks for coming on Software Engineering Daily. 

[0:53:54.0] LR: Yeah, than you very much, Jeff, for having me. It’s fun. 

[0:53:56.7] JM: Okay. Great. 

© 2017 Software Engineering Daily �18



SED 367 Transcript

[END OF INTERVIEW]

[0:54:02.0] JM: Your application sits on layers of dynamic infrastructure and supporting 

services. Datadog brings you visibility into every part of your infrastructure, plus, APM for 
monitoring your application’s performance.  Dashboarding, collaboration tools, and alerts let you 

develop your own workflow for observability and incident response. Datadog integrates 
seamlessly with all of your apps and systems; from Slack, to Amazon web services, so you can 

get visibility in minutes. 

Go to softwareengineeringdaily.com/datadog to get started with Datadog and get a free t-shirt. 
With observability, distributed tracing, and customizable visualizations, Datadog is loved and 

trusted by thousands of enterprises including Salesforce, PagerDuty, and Zendesk. If you 
haven’t tried Datadog at your company or on your side project, go to 

softwareengineeringdaily.com/datadog to support Software Engineering Daily and get a free t-
shirt. 

Our deepest thanks to Datadog for being a new sponsor of Software Engineering Daily, it is only 

with the help of sponsors like you that this show is successful. Thanks again.

[END]

© 2017 Software Engineering Daily �19


