
SED 313 Transcript

EPISODE 313

[INTRODUCTION]

[0:00:00.6] ES: Security vulnerabilities are an important concern in systems. When we specify

that we want certain information hidden, for example, our phone number, or our date of birth, we
expect this to be hidden throughout the system. However, this doesn’t always happen due to

human error in the code, because programmers have to write checks and filters across the
program.

In this episode, Jean Yang, assistant professor at the Computer Science Department in

Carnegie Mellon presents Jeeves, a language that allows programmers to specify security
policies more intuitively making it harder to leak information that is meant to be protected. Jean

explains how Jeeves was implemented and how it can be used.

We also talked about what it takes to bring research concepts from academia to the industry. At
the end, we had a very interesting conversation on how to educate a broader audience on the

importance of security. This episode also appeared on The Women in Tech Show, a weekly
podcast where women in tech talk about technology. If five shows a week of Software

Engineering is not enough for you, be sure to check it out.

[SPONSOR MESSAGE]

[0:01:35.3] JM: You are building a data-intensive application. Maybe it involves data
visualization, a recommendation engine, or multiple data sources. These applications often

require data warehousing, glue code, lots of iteration, and lots of frustration.

The Exaptive Studio is a rapid application development studio optimized for data projects. It
minimizes the code required to build data-rich web applications and maximizes your time spent

on your expertise. Go to exaptive.com/sedaily to get a free account today. The Exaptive Studio
provides a visual environment for using back end, algorithmic, and front-end component.

© 2017 Software Engineering Daily �1

SED 313 Transcript

Use the open source technologies you already use, but without having to modify the code,

unless you want to, of course. Access a k-means clustering algorithm without knowing R, or use
complex visualizations even if you don’t know D3. Spend your energy on the part that you know

well and less time on the other stuff. Build faster and create better.

Go to exaptive.com/sedaily for a free account. Thanks to Exaptive for being a new sponsor of
Software Engineering Daily. It’s a pleasure to have you onboard as a new sponsor.

[INTERVIEW]

[0:03:05.9] ES: Jean Yang is assistant professor at the Computer Science Department in

Carnegie Mellon. Jean, welcome to Software Engineering Daily.

[0:03:14.2] JY: Thank you.

[0:03:15.9] ES: Security vulnerabilities are becoming more common. We are even getting used
to seeing that thousands or even millions of accounts were compromised. In 2016, Yahoo said

one billion user accounts were hacked, and we have also seen that it’s possible to hack a car
and take control of the driving while a person is driving in the middle of the highway.

Now that we are moving to a paradigm of more connected devices with the advent of Internet of

Things, it’s clear that there can be a lot of security risks. What is the state of the art in terms of
security in academia?

[0:04:06.2] JY: There are many parts of academia with which we could talk about the state of

the art. There are people who work on encryption, so what kinds of techniques can we use to
protect individual pieces of data. There are people who work on the security of complex

systems, so people who focus on, for instance, Internet of Things, all the ways Internet of
Things can be hacked.

What I work on is programming languages and security. That’s about how we can build our

systems to be secure by construction. How we can improve our building materials so that we
can decrease the chance that programmer sloppiness leads to vulnerabilities and how we can

© 2017 Software Engineering Daily �2

SED 313 Transcript

make sense of the code so that it’s easy for someone to come and inspect it and say, “Hey, this

is the correct code.” It’s also easy for people to audit code after the fact. If there is a break in,
they can say, “This is why it happened, and these are the parts of the programs that lead to the

leak.”

[0:05:08.7] ES: This is more about embedding security in a programming language, right?

[0:05:13.7] JY: Right. This is about thinking about security in programs from a first principle’s
point of view, because if we think about how security is done right now, a lot of things are after

the fact. You build your help program and then you say, “Oh, wait. My toaster is connected to
the internet now. This means that when I’m not home, people can turn on my toaster and set my

house on fire, or they can make my toast saggy, or do all these other things.”

Now, let’s go back in and let’s make sure that, for instance, you have to be on my home network
to use my toaster, or these kinds of policies after the fact, or for Facebook. You share your

location on your timeline and securities thought of as, “Okay. We have this whole Facebook that
lets you search over people’s data, that lets you go to other pages and then see connected

data.” If I’m say I’m at Disneyworld, and then I go to the Disneyworld page, it might say, “Your
friend Jean happens to be at Disneyworld right now. Connect with her in some way.”

To write the code for that right now, someone has to go in and everywhere that where a

vulnerability might happen, they have to go in and write a check and say, “Okay. Jean’s location
shouldn’t be shared at Disneyworld except with people who can see it.” If you’re doing Graph

Search, “Oops! That’s another place Jean’s location can be seen,” so we’re going to have to
protect that there. It’s more that programmers have to think about security in a very manual

explicit way every time, ‘cause there’s no one to handle this automatically for us right now.

Something that people have been thinking about in programming languages for a couple of
decades now are; first of all, what would it look like to have data values be associated with the

policies about when they can be seen? There has been decades of research on what is it mean
to check that programmers are adhering to these policies? If I say my location can’t be seen

somewhere, what does it mean to automatically scour the entire code and make sure that my
location isn’t actually being seen when it’s not supposed to be?

© 2017 Software Engineering Daily �3

SED 313 Transcript

[0:07:18.4] ES: Most of the examples of these policies are about who can see what and when,
right?

[0:07:25.2] JY: Right. Right. Right. Exactly. My research is about how can we make it easier for

programmers to construct these programs in the first place, because even if you’re able to
check that a program isn’t leaking information, someone has to write that program in the first

place, meaning they have to write the right checks in the right places. They have to write the
right functionality to say, “If Jean is seeing it, versus if her mother is seeing it, there’s a different

behavior that needs to happen.” Someone still needs to go in and differentiate behavior in that
way.

My work is about, “How can we build into programmers from the beginning? If these are your

policies and this is what you want things to do, then automatically we can make sure that the
programmer shows the right value based on the right viewers.” As you said, it’s about who can

see which values. Also, in my work, what version of a value should be seen?

For instance, I might say, “My close friends can see my GPS location if they’re near me.”
Otherwise, they see what city block I’m on, or maybe what city I’m in, or even what country

depending on what I want them to see. All of these kinds of locations should be able to play well
with the rest of the program, and that’s something that I’m working on, getting a framework that

can manage these kinds of multiple views for you automatically.

[0:08:45.9] ES: What you’re talking about is important, because the way programmers have
been doing this, there can be cases that can be missed. For example, in a presentation that you

gave out, the Emerging Technologies Conference for The Enterprise at Philadelphia in 2016,
you brought up an example of an vulnerability in Airbnb messages. Can you explain what this

vulnerability was?

[0:09:13.2] JY: Right. With Airbnb, they have this thing where they want to be the mediators
between you, and the guests, and the hosts. They will scrub instances where the host writes

their phone number in a message, or something like that. They’ll redact that information.

© 2017 Software Engineering Daily �4

SED 313 Transcript

What I showed during this talk was there are some cases where Airbnb forgets to redact the

information. I think in this case, it was in the e-mail preview of a message. It showed the host
that, “Oh, dear guest, the place is ready for check in, and here’s my phone number in case you

want to call me.” On the website, Airbnb scrubbed that phone number information so the guest
couldn’t see it. In the e-mail, you could see the phone number and contact the host directly.

In this case, nothing bad is happening. It’s a leak that doesn’t hurt anybody, because the host

wanted to give the information to the guest. It’s showing that Airbnb didn’t intend for this to
happen, because they are pretty careful at scrubbing the phone number in most places. In this

case, they forgot. You can imagine how in a similar way Airbnb, or Facebook, or one of these
sites that has a lot of your critical data can forget to scrub some information that ends up

harming the user.

[0:10:31.1] ES: Are these cases missed because the way that policies are enforced is through
if/else statements?

[0:10:41.1] JY: Exactly. Exactly. Yes. The way the policies are enforced is the programmer has

to write an if and else conditional statement at the place where the data is being used, like, “Oh,
if this string is looking like a phone number, then we have to redact it,” or they can maybe factor

the code very nicely to do a library API call at that point. Everywhere that data might be leaked,
the programmer has to think, “Oh, I need to do something at this point.” If they forget to do that,

then information can be leaked.

[0:11:11.3] ES: The way that you explained earlier to embed this in a programming language, is
it at the minute where you declare a variable, like in addition to the type you specify?

[0:11:22.4] JY: Right. Right. Exactly. How we’re thinking about it now is when you’re declaring a

piece of data in addition to declaring the type, you can declare it to be sensitive or not, and then
you can declare permissions about how it’s meant to be seen. This is based on these many

years of language based security work that I’m talking about that looked at how do we label
sensitive data, and there’s also been a lot of work on what do the policies look like. How do we

talk about when data can be seen? Who it can be shown to and how we can relax the policies
based on extenuating circumstances or something like that.

© 2017 Software Engineering Daily �5

SED 313 Transcript

[0:11:57.3] ES: To first illustrate all these concepts in programming languages, you develop
Jeeves. Is Jeeves a programming language or a library for an existing programming language?

[0:12:11.2] JY: That’s a very good question. We call Jeeves a programming language and

research. What we mean in research by a programming language, it has a well-defined
semantics. The one way I think of programming languages is as applied logic. In programming

languages research, how we think of a language, it’s a logical system that we can apply and
write a real programming system out of. We’ve proven a set of properties about this system, and

it does certain things that we want.

In programming languages research, abstractly, a language is just like a close system. We can
reason about with us that have properties that we understand. How these languages can get

implemented is either standalone languages that people build compilers or interpreters for, or as
libraries that they graphed on to other languages.

How we have implemented Jeeves is as what’s called an embedded domain specific language,

an embedded domain specific library. We’ve implemented it as libraries in both Scala and
Python, and they are a little strange as libraries, because they actually rewrite the program as

they’re running it. That’s where the language’s library really comes in. It’s not just like this is a
set of calls. You can make — And that’s our language. Actually, when you include the Jeeves

library and you say, “This is a Jeeves function, we actually go and rewrite your program on the
FLY.

And so that whenever you’re doing a conditional statement or you’re making a variable

assignment, we’re making sure that everything happens according to the policies you stated by
calling our special conditional statement that does the appropriate policy bookkeeping instead of

the regular one, and our assignment function that updates our state based on the policies and
where the values are coming from and that kind of thing.

[0:14:03.0] ES: Are there any disadvantages to rewriting code on the FLY versus if the policy

implementation was added to Python, or Scala?

© 2017 Software Engineering Daily �6

SED 313 Transcript

[0:14:15.4] JY: Oh, year. Rewriting code on the FLY is very expensive, because you’re calling

over the AST as you’re going, and there’s definitely a nontrivial runtime overhead of doing that.
In fact, our latest work has been looking at if you can state policy specifications as fancy type

declarations, and then how we can use a compiler to in-search hacks into your program for you
by analyzing the code before you run it. That gets rid of your runtime overheads.

Unfortunately, it’s hard to do that right now for regular languages. We’re doing it for a language

called LiquidHaskell, which is Haskell plus even fancier types. One direction of future research
is to look at if a language had less fancy types, or even no static types at all, how we can adapt

these techniques.

[0:15:07.4] ES: However, this technique of a library for Python, or Scala, is good enough to
prove the research idea, the concept, right?

[0:15:18.1] JY: Right. Right. Exactly. There are ways to make it more efficient. We can look at,

“Okay. In these cases, we don’t actually have to rewrite the program, because we know these
program properties.” Yeah, to show that the language actually works and to show, “Hey, this is

how you can play nicely with an existing language that people actually use, that lots of people
actually use, “that this is a good first way to go.

[0:15:40.6] ES: What are the different labels of policies that can be specified in Jeeves?

[0:15:46.7] JY: The policies are actually very expressive. Anything you can write as a program,

you can express in Jeeves. You can have — For instance, you can have simple policies like you
have to be logged into the system to see this, or you have to be part of this list. Even you have

to be part of this list, starts being less simple, because that’s a policy that can include a
database query right there.

Then, you can say, “You have to be a member of the list that’s protected to see the protective

list,” or, “you have to be within 50 feet of the secret location to see the location.” These are even
fancier policies that might even depend on the value that they themselves protect.

© 2017 Software Engineering Daily �7

SED 313 Transcript

The really neat think, I think, about the Jeeves approach is that because the policies are

managed by the system and because we really tried hard to support very expressive policies,
your policies can just be arbitrary database queries, arbitrary code, and we’ll make sure that the

policies are resolved in a way that doesn’t leak information.

[SPONSOR BREAK]

[0:16:59.2] JM: Indeed Prime flips the typical model of job search and makes it easy to apply to
multiple jobs and get multiple offers. Indeed Prime simplifies your job search and helps you land

that ideal software engineering position. Candidates get immediate exposure to the best tech
companies with just one simple application to Indeed Prime.

Companies on Indeed Prime’s exclusive platform will message candidates with salary and

equity upfront. If you’re an engineer, you just get messaged by these companies and the
average software developer gets five employer contacts and an average salary offer of

$125,000. If you’re an average software developer on this platform, you will get five contacts
and that average salary offer of $125,000.

Indeed Prime is a 100% free for candidates. There are no strings attached, and you get a

signing bonus when you’re hired. You get $2,000 to say thanks for using Indeed Prime, but if
you are a Software Engineering Daily listener, you can sign up with indeed.com/sedaily, you can

go to that URL, and you will get $5,000 instead. If you go to indeed.com/sedaily, it would
support Software Engineering Daily and you would be able to be eligible for that $5,000 bonus

instead of the normal $2,000 bonus on Indeed Prime.

Thanks to Indeed Prime for being a new sponsor of Software Engineering Daily and for
representing a new way to get hired as an engineer and have a little more leverage, a little more

optionality, and a little more ease of use.

[INTERVIEW CONTINUED]

© 2017 Software Engineering Daily �8

SED 313 Transcript

[0:18:47.8] ES: One of the early experiments that you did with Jeeves with a real world

application was building a conference management system for a small conference at MIT. What
were some of the examples of the policies that needed to be in place for a system like this?

[0:19:09.8] JY: Yeah. For an academic conference, this is the example that researchers like to

use. One reason we like to joke is because an academic conference management system is
something that someone reviewing a paper has to have used in order to get to the paper review.

It’s also something with very complicated policies potentially, because you have these different
roles, so you could be a paper author, or you could be a paper reviewer, or you could be the

chair of the program committee in charge of managing all the reviews.

Depending on your role and what stage of the conference it is, you can see different things. If
people submit a paper, a paper has a title, it has authors, it has a body. The authors are

something that’s very sensitive potentially. There’s in-reviewing. There’s something called
blinding. Most conferences, how they choose to run it in our field is there’s either single blind,

which is the reviewers can see the author identities, but the authors can’t see the reviewer
identities, or there’s double blind, which is neither the authors nor the reviewers can see who

each other are.

There are policies about when authors and reviewers can see each other’s identities. There are
also policies about when reviewers can see other people’s reviews. You can imagine, if one

person reviews a paper favorably, or unfavorably, it can affect other people’s opinions. Many of
these conferences have a policy that says that while you can’t see other people’s reviews until

you’ve submitted your reviews, and maybe you can’t even see who the other reviewers are until
some stage in the conference to preserve some kind of notion of fairness.

You have policies about who can see reviewer’s identities, and which reviews can be seen.

Also, authors might not be able to see the reviews until a certain date where they’ve discussed
all the reviews and now they’re allowed to be released, et cetera. These are all the sorts of

policies that go into a conference management system.

[0:21:04.4] ES: What was it like using Jeeves who established these policies for this web
application?

© 2017 Software Engineering Daily �9

SED 313 Transcript

[0:21:11.0] JY: It was fairly straightforward using Jeeves. The nice thing that we showed was if
you use Jeeves, you can write the policies once instead of as checks across the entire program,

and so you just write it once. Then, when you’re doing search — There are some examples of
when — Of leaks that have happened in these conference management systems. Many of them

include the search interface.

If you go to your paper directly, you can’t see — If you’re the author. You can’t see necessarily,
“This reviewer said this,” or, “I think they’re going to accept the paper,” or something like that. If

you go the search and you say, “I want to search for all the papers that have been accepted.” I
think that’s actually an actual bug that’s happened before. You can use that if your paper has

been accepted, or you go to your search and then you say, “I want to sort the papers by score,”
and maybe you can’t see the score of your paper directly, but somehow the sorting function

could have seen your paper, your paper score, and then you can infer the relative scoring of
your paper based on that.

All of that, you don’t really have to worry about if you use Jeeves.Because we were actively

developing Jeeves at the time, the bigger problem for us was actually getting everything to work
and run out of memory and things like that, because we were doing this very expensive dynamic

rewriting of our program and exploring all possible program pads and all these stuff. For the
policies, it was fine. It was more — When you’re building a research language and you’re

saying, “Okay. We’ll just do the most expensive thing for now to show that our language works
conceptually.” Sometimes you can’t do that if you’re trying to do something for real.

A big thing we realized was, “Well, the semantics of the language are great, because you have

these guarantees of correctness.” In practice, you really don’t want to be exploring all your
programs pads, and you want to find ways to decrease that and that kind of thing. That was

where we ended up spending most of our time.

[0:23:06.8] ES: What about the database for this application?

[0:23:10.8] JY: Yeah, that’s an excellent question. In building the conference management
system for the first time, I had a big realization which was, “Oh shoot! Up until now we’ve been

© 2017 Software Engineering Daily �10

SED 313 Transcript

thinking about security and privacy only in the runtime layer, essentially, because if we’re doing

things at the “language level” we’re really only thinking about a small part of a web application.
There’s also the front-end. There’s also the entire database. What I realized then was the

database is a huge gaping hole. You put your policies alongside your data.

Really, where your data is being stored is the database. If you want to use the database for any
queries at all, those are not managed at all by Jeeves. That’s what motivated a few years of

work on the Jacqueline Web Framework in which we extended the computational model of
Jeeves to a SQL database, and we looked at — This is how you enforce policies across the

application and database, and this is how you can get this idea to work for real.

[0:24:13.0] ES: This is great, because by working on a real world application, even if it was
small, you found downsides for the current implementation such as performance and thinking

about the pipeline from a web application perspective. This makes me think about what it takes
to take a concept from research and academia to the industry and the barriers for industry

adoption. Why is it so slow to incorporate research into the industry?

[0:24:53.1] JY: I think there are a few reasons why it’s so slow. One thing is that even our work
on Jacqueline which involved extending the programming model to the database, it took a really

longtime for people to see that it was useful, because, I think, for a while we didn’t know exactly
how to articulate this as an interesting research result even though it was. Two; people kept

saying, “You did Jeeves already, how is this different?”

Part of it was just we needed to formulate the problem in a way that was interesting to people,
but I think that academia also does not necessarily reward work on taking your idea and building

a system out of it, because it’s easy to say, “Oh! This is just engineering.” Yes, a lot of work is
potentially just engineering. It takes longer, potentially, to figure out what’s interesting about it.

This engineering work often gives you really good insights about how to make things that are

actually useful. It’s definitely not something that’s incentivized by academia, but it’s much easier
for people to judge the novelty of something that’s completely novel than it is to judge the

novelty of something that seems halfway between research and engineering, especially

© 2017 Software Engineering Daily �11

SED 313 Transcript

because if someone hasn’t gone and written a web application, they have no clue what it means

to interact with a database.

For me, I really hadn’t built a lot of web apps before that. I never thought about the database
interaction. If you think about these are people who are trained to think about certain kinds of

problems and they’re not going out and building things necessarily, it’s really hard to convince
them, “Hey, if you go out and build things, these are the holes.”

I think that the incentives are just not necessarily there. Even Jacqueline, what we built with the

database is still very much a research prototype. I think that there are a lot of questions that
would need to be answered before it’s production ready. Some of the questions we’re answering

now; how do we get rid of the runtime overheads? How do we do all these other stuff?

It takes a lot of scheming to do stuff that is taking us towards something useful while being
aligned with the incentives of academia, producing ideas that are novel, showing that, “Hey, this

is another step towards building knowledge instead of just building a system.” I think there is this
whole area between what makes a very splashy good research paper and what actually is

production ready, ‘cause I think that the way to think about academia is we’re de-risking ideas
for industry. Even once we’ve de-risked the big things, there are still many questions to be

answered that are smaller risks that aren’t making money right away, that you can’t build a
startup based on, that it’s not clear who’s going to answer these questions.

I think that industry research labs have been in a good position to answer these questions, so

Microsoft research, Samsung research, Ball Labs, and these kinds of places. They have some
incentive to eventually push ideas into production, but they also have a lot of trained PhDs,

trained researchers who think very academically. These places have been pushing things a lot
further towards industry. I think outside of that, it’s very hard to have the right set of incentives to

do very risky work that is highly technical, very specialized, and might not work.

[0:28:14.4] ES: Do you think academia should change to a more balanced model where it does
incentivize industry related applications? For example, the fact that Jeeves was working on a

web application?

© 2017 Software Engineering Daily �12

SED 313 Transcript

[0:28:28.0] JY: I do think that it would be nice if people realized that we do have these blind

spots in academia, but there is a danger. If we move too much towards an applied model that
there’s a real blurring between what’s academia, versus what’s industry.

A problem is that it’s just hard to tell what’s a good idea from what’s a bad idea, and there is

something very nice and very useful about the fact that academia allows people to build on
ideas that are not immediately useful, and such this term basic research that you might have

heard before. It’s talking about research that how do we get a jellyfish to glow and not like how
do we cure this very specific disease that this many people have at this very moment?

Getting jellyfish to glow turned out — I think that wasn’t the question, but how do we get things

to glow based on the jellyfish protein? I don’t know if you’ve heard about this, but that’s like
really changed neuroscience research and changed how people are curing disease and all

these stuff. It started with some very basic questions that seemed irrelevant to a lot of people.

It’s really good to have a space for that kind of work. I think it’d rather have academia on the
side of being less practical, than more practical, because there are pockets of computer science

that are very close to industry, and I worry about those pockets, because people are competing
on, “How fast is this? How much money it can potentially make?” We’re not industry. We’re

never going to be competitive with industry when it comes to those very concrete benchmarks. I
think that if we get into a state where we’re just competing with industry, we’re going to lose

every time, and we’ll lose what makes academia so nice for insulating these kinds of ideas.

[0:30:19.4] ES: We’re thinking more outside the box, because if it’s focused on the industry, you
would — Maybe it would have been shut down, the idea about glowing things, because it would

have been, “What are you going to do with that?”

[0:30:33.2] JY: Right. Exactly. I think that when we first started working on Jeeves, we said,
“Well, we want these semantics, but the only way we know how to do it is in a very expensive

way.” If we were an industry, people would have just laughed us out of the room and said, “No.
You’re never going to do this.”

© 2017 Software Engineering Daily �13

SED 313 Transcript

Around the time I started working on Jeeves, the summer before, I had internet Google, and

they were rewriting their front-ends of something from Java back to C++, because they couldn’t
afford the memory overheads of Java. I would talk to them about programming languages and

they’d say, “That nice and all, but we just can’t afford the memory overheads.” That’s Java, not
anything more expensive.

If that’s the level of innovation that you’re tied to if you want something production ready, you

really can’t get very far thinking that way. There is a lot of value in having a space where people
say, “Oh! Just give us the newest most crazy idea and we’ll accept it for its novelty.”

[0:31:26.6] ES: Research from academia can be slow to be incorporated in the industry.

However, eventually, it makes it there. One of the things you mentioned is programming
languages, for example, like Swift have taken features that were incubated in research decades

ago. One of the ways that you mentioned it might be faster to get it into the industry could be
having startups adopt certain technology first. Why do you think startups can be a good fit?

[0:32:04.5] JY: One thing that I’ve thought about a lot is why big companies are slow to adopt

certain kinds of new technologies, and a big reason I think is because they have really large
legacy code bases that are tying them down in certain ways. If you’re Facebook, you have

millions of lines of existing code, and an existing code base.

If you’re thinking about adopting a new language, or even if you’re thinking about a new kind of
programming tool, a big question is, “How does this play well with these millions of lines of code

that I’ve already invested in that we’ve trained people to understand?” et cetera.

If you’re in the business of making programming language and tools, one route to go is you
make your code play with legacy systems which is one route I’m taking very seriously and I’m

interested in taking with my research. The other route is if you want to build new stuff, you look
at people who don’t have that kind of baggage. I’m not saying baggage in a negative way, it’s

just something that people have to consider when they’re making decisions.

I think that there’s just less risk involved if you have no history of technology you’ve used before
that anything has to play well with, you can take on these new ideas and you can move faster.

© 2017 Software Engineering Daily �14

SED 313 Transcript

[SPONSOR BREAK]

[0:33:28.5] JM: When you are continuously deploying software, you need to know how your
code changes affect user traffic around the world. Apica System helps companies with their

end-user experience, focusing on availability and performance. Test, monitor, and optimize your
applications with Apica System. With Apica Zebra Tester, Apica Load Test, and Apica Synthetic,

you can ensure that your apps an APIs work for all your users at any time around the world.

Apica Zebra Tester provides local load testing for individuals, small teams, and enterprise
DevOps teams to get started quickly and scale load testing as your needs evolve. Apica Load

Test ensures that your app can serve traffic even under high load. Apica Synthetic sends traffic
to your website and your API endpoints from more than 80 different countries, ensuring wide

coverage.

Right now, you can go to softwareengineeringdaily.com/apica for a webinar about the real ROI
of API testing. You can also find past webinars. Just how to optimize websites for fast load time.

Go to softwareengineeringdaily.com/apica to find the latest webinars on load testing and lots of
other topics, and check out Apica System for testing, monitoring, and optimization.

Thanks again to Apica for being a sponsor of Software Engineering Daily.

[INTERVIEW CONTINUED]

[0:34:58.9] ES: At the ET Conference, another thing that you mentioned is that we rarely see

security focus startups. It might be because there are no flashing demos, or users are not
educated yet about the importance of this. I think that with this idea, you confounded the cyber

security factory, which is an accelerator for security startups. Can you talk of a little bit about its
mission and what it is?

[0:35:30.9] JY: This came out of a conversation with a fellow PhD student at MIT, Frank Weng.

We were talking about how the startup culture right now is such that you need certain kinds of
demos and a certain kind of flash and slickness to get people’s attention, and security really is

© 2017 Software Engineering Daily �15

SED 313 Transcript

not that. We wanted to create a space for these kinds of highly technical solutions that required

a very niche audience to understand the significance of. Also, we wanted to create a space for
security in particular, because how you demonstrate a security concept is good is by showing

that you’ve done the math and you’ve thought about things deeply so that you can guarantee
the absence of certain kinds of behaviors, and it’s very different than showing the presence of

certain kinds of features, which is what this demo culture is all about.

We also felt that while there are a lot of certain kinds of security startups, so if you do like
penetration testing, or bug finding, that’s much easier to start in many ways, because it’s about

demonstrating the presence of something, “Hey, I looked through your codebase and I found
these vulnerabilities.” You can show something based on that. Even cryptography is getting a

little more popular, because you can show, “This is how fast they can encrypt something.”

There are many parts of security that are about building your system better, building your
system in a more robust way that are more subtle. We wanted to create a space for thinking

about how companies like that could communicate about their technology. Even for people who
are working on ideas like that to realize that they could be a company, because if you’re not

seeing other companies like that and you aren’t necessarily thinking in an entrepreneurial way,
you might not think that this is an option that you have.

[0:37:23.5] ES: One of the key findings that surprised me from the two companies that initially

I’m boarded with cyber security factors, was that they said, “Networking can really drive
innovation.” Why do you think that is?

[0:37:41.3] JY: It’s something that we alluded to earlier in our conversation, which is that there

are these gaps between how different people see things. Academics have one world view that
we live in, and people in industry have another worldview that they live in. Often, the problems

that academics think are problems, are not quite the same as what people in industry think are
problems, and people in different pockets of industry even have different ways they look at

problems and how they prioritize which problems are the most important.

The more you get people talking to each other, the more cross-pollination you have of these
different views, and maybe academics can adjust our world view. We’re still working on early

© 2017 Software Engineering Daily �16

SED 313 Transcript

crazy out there problems, but it’s directed in a way that is potentially more useful to people,

more useful sooner, or just more useful in terms of the direction it’s taking. There is a point
where talking to people too much makes academics too applied, or makes industry people have

strange views.

[0:38:42.1] ES: They cyber security factory have connections with potential clients for the
participants of the program?

[0:38:49.8] JY: Yes. Frank has gone on to run it last year, and he’s running it again this year, but

through the years we’ve formed a lot of connections with potential companies who are
interested in piloting these kinds of security solutions and/or incorporating these companies as

part of them.

We talked to a company — I’m not sure how much of this is disclosable, but there is a company
that was really interested in taking these teams and running pilots of their stuff as part of their

own programs, and that kind of thing. Having a framework for doing this is definitely helpful for
creating social, or some kind of corporate infrastructure for these companies to plug in.

[0:39:33.7] ES: Last question; in your opinion, what are some of the things that we could do to

educate people more about the importance of security in software? Because I think part of the
big problem is that a lot of people don’t know about this, because they don’t know what happens

behind the scenes and the code.

[0:39:55.2] JY: Yeah. I read an article yesterday that talked about how better user interface
design can help with informing people about their different security and privacy options and can

get them to think more about how their security actually matters, because I think, right now,
there’s a really strange relationship that people have with their security in privacy. They’re really

not in control of it, because if you think about it, you download some app, let’s say, Uber, or
something like that, it says, “Uber wants to use your location.” You can click yes and let Uber

use your location, or you can click no, and then Uber doesn’t work anymore. Something like
that.

© 2017 Software Engineering Daily �17

SED 313 Transcript

I recently had this experience with using WeChat, that said, “WeChat wants to use your

location.” Then every time I wanted to start a conversation where I needed to search for a
friend, it said, “It needs to use your location.” For the first week or two, I just said, “No,” and I

would just wait for people to WeChat me, because I said, “No. I don’t want them to use my
location.” I don’t know what they’re going to do with my location. It got kinda old after a while

and not to be able to initiate chats with people.

Yeah, I think that, right now, one reason people might not care is they feel like even if they care,
there’s not much they can do about it. These dialogue boxes really aren’t initiating dialogues or

kind of coercing us to go along with certain policies about how our data is being used.

I think there are some different parts of this. One is that there needs to be more conversation
about how users can have more control over their data. I’m not entirely sure how this can go,

because, right now, the companies really have full control over what they allow, and so Uber
would need to invest in this whole other path. If I don’t want to share my location with Uber

sometimes, they are the ones responsible for making other functionalities possible, where they
see my location only some of the time.

One of my hopes with my work is to address this, if there’s an easy way for me to tell Uber,

“Okay. This is what my location data should look like to you.” Sometimes I just don’t show you
my location and you have to deal with it. That starts more of a dialogue with Uber about what

the policies should be.

The other thing is maybe we need to wait for once there are more capabilities for doing this.
User interface designers can also do a better job of saying, “These are your options. You don’t

just have to click yes right now. This is very coercive.”

I don’t think it’s the fault of the user interface designers. I think this is just what they have to do,
but once we get to a place where can have this more of a back and forth between users and the

creators of software about our data, then user interface designers can explore some more
interesting user interface design options for like facilitating this dialogue.

[0:42:43.0] ES: Definitely. It shouldn’t all or nothing.

© 2017 Software Engineering Daily �18

SED 313 Transcript

[0:42:45.5] JY: Yeah, ‘cause right now — Sure, you can say people don’t care and it’s our fault,
but what are we supposed to do? Not use software? I don’t think it’s entirely fair to blame

people.

[0:42:57.5] ES: Jean, thank you for coming on the show. It was great talking to you about
security and programming languages.

[0:43:05.6] JY: Yeah, thank you so much for having me. This is fun.

[END OF INTERVIEW]

[0:43:12.3] JM: Thanks to Symphono for sponsoring Software Engineering Daily. Symphono is

a custom engineering shop where senior engineers tackle big tech challenges while learning
from each other. Check it out at symphono.com/sedaily. Thanks again Symphono.

[END]

© 2017 Software Engineering Daily �19

