
SED 1272 Transcript

EPISODE 1272


[INTRODUCTION]


[00:00:00] JM: Mark Saroufim is the author of an article entitled Machine Learning: The Great 
Stagnation. Mark is a PyTorch partner engineer with Facebook AI. He spent his entire career 
developing machine learning and artificial intelligence products, which gives him a very 
interesting take on machine learning products, product engineering, and academia. Before 
joining Facebook to do PyTorch engineering, Mark was a machine learning engineer at 
Graphcore. Before that, he founded Yuri.ai. He's also published lots of other content about 
machine learning. In this episode, we discuss machine learning subjects and his experience 
developing cutting edge software.


A few announcements before we get started. One, if you like Clubhouse, subscribe to the club 
for Software Daily on Clubhouse. It's just Software Daily and we'll be doing some interesting 
Clubhouse sessions within the next few weeks. And two, if you're looking for a job, we are hiring 
a variety of roles. We're looking for a social media manager, we're looking for a graphic 
designer, and we're looking for writers. If you are interested in contributing content to Software 
Engineering Daily, or even if you're a podcaster, and you're curious about how to get involved, 
we are looking for people with interesting backgrounds who can contribute to Software 
Engineering Daily.


Again, mostly we're looking for social media help and design help. But if you're a writer or a 
podcaster, we'd also love to hear from you. You can send me an email with your resume, 
jeff@softwareengineeringdaily.com.


[INTERVIEW] 


[00:01:40] JM: Mark, welcome to the show.


[00:01:41] MS: Thank you so much. I appreciate it. Good to be here.


© 2021 Software Engineering Daily 1

mailto:jeff@softwareengineeringdaily.com


SED 1272 Transcript

[00:01:45] JM: The impetus for this show is an article you wrote called Machine Learning: The 
Great Stagnation. I'd like to dig into your ideas there. You're currently working at Facebook as 
an AI engineer. That's obviously an esteemed job that speaks to your level of expertise. So, I'll 
just start off with a fairly open-ended question. What are the most acute problems in the 
machine learning culture ecosystem?


[00:02:14] MS: Yeah, for sure. I mean, so I think as you alluded to, like, there's a couple, but I 
think a lot of it boils down to personal incentives. So, what I mean by that is, we've gotten to a 
point today where, there's sort of been this long-standing feeling in the community, as soon as 
we got to larger and larger models, that – there's a paper called Attention Is All You Need, 
referring to having attention networks, and just scaling them and getting great performance. I've 
also seen the people say the meme, like, money is all you need. I just feel like even though I 
feel – I have actually two positions on this. One, I feel this is sort of an intellectually lazy 
position. I'll get to that in a second.


But just like upfront, what's going on is that like, well, let's say, you yourself, work at an 
esteemed lab, that you have lots of students. Well, what you can do is like, you can parallelize a 
bunch of experiments over all of your students. So, the main algorithm in machine learning is 
called gradient descent. So, you're optimizing some function. But graduate student descent is a 
term I coined in the article that essentially refers to parallelizing work across all of your students. 
And then as soon as like one of them works out then great. Obviously, this sort of algorithm is 
accommodating for lab with with larger resources and there's feedback loops.


For example, like, let's say, your colleagues are also running lots of these kinds of experiments 
and they're not necessarily publishing them, while you can learn a lot from them. So overall, 
here's the thing, I think for a long time like just because of the title of the field, like AI or artificial 
intelligence, it sounds like what a lot of us do is really cutting edge. But for me, it's sort of like, 
even though, like I'm in the field myself, I'm okay with poking fun at my own skill set. And what I 
started to realize what was happening was, in fact, we weren't doing much really innovative 
work. What we were essentially doing was scaling stuff that we knew worked well, and basically 
hoping for the best.


© 2021 Software Engineering Daily 2



SED 1272 Transcript

So, there's sort of like this competition among a lot of larger tech companies, where they're like, 
well, we trained a trillion-parameter model, or we trained a 10 trillion parameter model, and this 
is easy PR. I think CPU manufacturers, for example, have been doing this for a long time. 
They're like, “Oh, we have a billion threads.” And I don't know how many cores. And that all 
sounds great and good. But really, what matters more is the the task level performance, and is it 
like an economical decision?


So actually, I mean, like, one thing I also want to quickly bring up is that even though there are 
all of these incentives, I think people end up hating on large models for a lot of wrong reasons. I 
think one of them is people say, “Well, these things have these insane energy requirements. 
We're going to destroy the planet by like training larger and larger models.” I think this is 
nonsense. I actually wrote an article sort of looking a newer one, looking at the energy 
requirements for larger language models. And it's like nowhere near anything to be fearful of, 
and the way they work makes it so that they're actually insanely efficient. So, there's definitely a 
lot to unpack here. So, let me know what's interesting, and we can dive deeper into it.


[00:05:19] JM: Well, not to take you off course so early, but given that you've looked at some 
energy requirements stuff, do you have any perspective on the whole Bitcoin debate, whether 
crypto is too energy intensive to justify?


[00:05:33] MS: Yeah, I think that's an interesting point. I'm just going to restrict this discussion 
to Bitcoin, because I don't know about other efforts too much. But here's the way I think of it. I 
think a lot of people that criticize Bitcoin, they'll often say something like, well, it uses as much 
energy as Sweden, for example. I think that claim is meant to provide like a certain sense of 
shock value, like, “Oh, wow. This is really bad.” But I think what it really comes down to is like a 
lot of critics of Bitcoin often aren't criticizing its energy use. What they're criticizing, sorry, they're 
not criticizing its large amount of energy use. What they're actually getting to is, Bitcoin shouldn't 
be entitled to any energy at all. I think this is sort of a dangerous point of view. Because while 
you end up in situations like, let's say, I'm balding, right? So, I don't particularly need a hairdryer. 
But if you took the total sum of all hair dryers in the world, it's also a substantial amount of 
energy, but it would be absolutely insane for me to go and make the claim, you know, maybe we 
don't need hairdryers.


© 2021 Software Engineering Daily 3



SED 1272 Transcript

So, that meme aside, just specifically looking at Bitcoin, I think what people don't understand 
about it, is again, they'll compare it to something like Visa, and they'll say, “Well, Visa does, I 
don’t know, a billion transactions a second. Bitcoin does like 30. Therefore, Bitcoin is useless.” 
But really what I think of it, it's sort of like a spectrum of, do you want something to be fast and 
centralized? Or do you want it to be slow and decentralized. So, at the base layer, Bitcoin 
provides something that's very slow, but very trustworthy, where you don't need to trust anyone. 
And at the other end of the spectrum, you have Visa where I need to trust Visa, and they can 
look at all my transactions. But I know that it's very fast. 


Bringing this discussion back to language models, I think they have a similar characteristic, and 
that a lot of critics of large language models, they don't like them for two reasons. They'll say 
something like, “Well, this is just big tech that is destroying the incentive structure in academia.” 
So, that's point one. But then the second point as well, but these things are using so much 
energy, at some point, we're going to destroy the planet because of them. My point in my article 
was, like, these are mutually – you can't have both positions. Because the nice thing about 
language models is that you can fine tune them. You can use them as a base layer for whatever 
other model you're using. So, effectively, whatever work some big company does to make a 
language model really good, can be leveraged by thousands of engineers when it comes to fine 
tuning it, but also be leveraged by millions of people when it comes to pre training them.


So, even though if you look at, let's say, Google's latest switch transformer, which uses about 
three times the amount of energy as a plane trip from SF to New York. Again, in the paper, they 
try to say, “Oh, wow, that's a lot.” But when I looked at it, I was like, “Wow, that's actually very 
little”, because there's maybe like five or six such models being trained every year. Whereas if 
you look at airplanes, there's maybe like 40 million flights happening every year. And whereas a 
flight can only service the people that are on the plane, whereas a language model, it can 
potentially service millions or billions of people. So, they're actually insanely energy efficient and 
I think they also have some interesting implications for how to design energy grids, which is also 
true for Bitcoin.


[00:08:47] JM: The idea of building really, really large language models. I think of this as 
something that you can do much more effectively in industry than in academia. Because in 
industry, you just have access to a greater array of resources, a greater array of demand 

© 2021 Software Engineering Daily 4



SED 1272 Transcript

specific tools, probably higher quality coworkers on balance. What does academia offer these 
days in the realm of machine learning research? Does academia really offer anything of 
significance? Is it a total, no offense, to the academics, but I’m just genuinely curious, like, is it 
effectively kind of a lost cause?


[00:09:31] SM: So, it's actually a complex question. So, let's dissect that a bit. I think that like 
part of the issue is that like, the first thing you've alluded to, is there's just some things that 
industry is better at. I think one of those things is scaling. Basically, execute, like basically using 
resources to have some sort of predetermined outcome. I think like industry just shines at it 
because you have sort of like these top down hierarchies, you have like large sources of 
funding, you have PR. You're not like arguing over grants and stuff. But there's effectively 
another class of academic nowadays where it's become very common for a lot of computer 
science professors to have a dual affiliation where they also work for a large tech company. So, 
it's very common to see someone like let's say, work at Berkeley or CMU, but then they're also a 
manager at like Microsoft or Amazon.


That arrangement, I find that a bit bizarre. I mean, from a professor's perspective, it's great, 
right? Because there's no downside. You can have the nice academic cushy job, sorry, you can 
have the freedom of an academic job, but then you can – and the prestige of it. But you can also 
have the reliable high income that you would generally get at a larger tech company. This is 
interesting, because I mean, most people at larger tech companies won't have that level of 
freedom. So, I think these kinds of academics have sort of gained the system for something that 
works really well in the short term. One thing I call them out in my article is that, if you're sort of 
engaging in this kind of arrangement, like you have to somewhat be honest with yourself and 
not call yourself a risk taker. The thing that it reminded me of quite a bit was, sometimes I would 
watch like something like CNBC finance, and you'd have like, some person sit and talk about, I 
don't know, some fears in the stock market, or actually, the stock market is underpriced or 
something.


But regardless of what they say, and or how accurate their predictions are, they just continue 
going up on television, and just like talking, because like, they're sort of like known thought 
leaders. But it's not their portfolio that we're measuring them on. It’s just basically like how 
charismatic they are, or how compelling their words are. So again, when it comes to large model 

© 2021 Software Engineering Daily 5



SED 1272 Transcript

training, or anything that involves scale, I don't think academia has a lot to offer anymore. But 
when it comes to, basically cheaper techniques, I think there's a lot of things that academics 
could offer, if they sort of changed their mindset of it. What I mean by that is, if your attitude as 
well, you know, machine learning is going to be solved by scaling. Great. You should stop being 
a machine learning professor. You should go get a job at a big tech company, and you should go 
scale these techniques.


But if you do genuinely believe that these larger techniques aren't the way to go, and that 
there's more efficient techniques that involve, like biasing your models a bit more, then I think 
being an academic is still great. And what you can do there is basically, instead of arguing with 
people on Twitter that like, “Well, my technique is the best.” You can, for example, produce a 
data set by yourself where your technique really shines, and basically tell people like, “Look, 
here's a data set I have. The large transfer models really suck on it. My technique seems 
decent, how come?” That's a very interesting discussion. 


Unfortunately, though, there's another bias here, where a lot of papers are essentially judged to 
have the need to be state of the arc, which means that iterating on data sets isn't as important 
as iterating on algorithms on specific data sets. I have the strong opinion as well in the 
reinforcement learning field like, like everywhere. But yeah, I mean, I think academia still has a 
lot to offer. They just have to go about things fairly differently and not compete with big tech 
companies at stuff they already excel at.


[00:13:23] JM: We've talked around the ideas of your paper at this point. But let's get into it 
head on. So, Machine Learning: The Great Stagnation, your article explores a lot of ideas, what 
are the key points you're trying to hone in on?


[00:13:42] MS: Yes, so I think there were really two main points that I wanted to address. I think 
a lot of people sort of stick to the first half and the first half is, is I guess, like more bombastic 
and where I explore various incentive structures that make it so core ML research has 
somewhat stagnated. So, one of these is basically a rise in complexity where because 
everything needs to be state of the art, like a very reliable way of making something state of the 
art as you take something that used to be state of the art like a generation ago, and then you 
just make some random changes to it. Eventually, you can get something that works and you 

© 2021 Software Engineering Daily 6



SED 1272 Transcript

can reproduce, and then you can share that. And then you get famous, you get Twitter followers, 
people pay more attention to you, you get like big academic appointments, where you can get 
more students to do the same kind of incremental research.


But I jokingly said, and actually, this is not something that – even though it's a very obvious point 
to a lot of people that are in machine learning, I had this joke in the article where I said, like 
matrix multiplication is all you need. It's true. I mean, regardless of whether using transformers 
or recurrent neural network or convolutional neural network, they're all in some shape or form, 
like a form of matrix multiplication. So, I also had this joke on Twitter like a couple of years back 
where I said, eventually someone is going to say like, multi-layer Perceptrons is all you need. 
And then lo and behold, there was like a paper by a bunch of Google people saying like, “Well, 
yeah, with a bunch of clever tricks, you can just use multi-layer Perceptrons and you can beat 
transformers.”


So, all of these ideas are encapsulated by this really nice, very short, like one-page essay by 
Rich Sutton, called The Bitter Lesson, which is that like, ultimately, scale wins. And as much as 
we like, humans like to think our ideas are really clever. It seems that in a lot of cases, they're 
not really all that clever. So, that's sort of like how I think the first half ends and there's a couple 
of more ideas. Really, one of the main ones that I've been exploring was this idea of how many 
angels can dance on the head of a pin. What that means is like, I went to school in a Catholic 
school for 12 years, and a lot of like, basically, like, scholarly religious debates at the time and 
Constantinople. There were people writing like dissertations about like, how many angels can 
you fit on the head of a pin where the arguments were, are angels material or not? Do they have 
some way of becoming material? People like, wrote these long essays about it. And while all of 
this was happening, the Ottomans just invaded Constantinople and and took it down.


So, it's sort of a warning to not be too navel gazing, and sort of acknowledge when your ideas 
maybe aren't necessarily very good. So, that's the first half of the article. But then the second 
half was really, like, after I wrote this, I'm like, “Well, but obviously, I'm still in the field, right?” So, 
how come? I started being a lot more intent of the projects that I thought were very compelling 
that weren't necessarily very popular in the core ML community. For example, like one idea I'm 
really bullish on is the idea of people building more game simulators. So, Unity is a game 
engine, for example and you can basically build any game you want. It can involve like 

© 2021 Software Engineering Daily 7



SED 1272 Transcript

language. Let's say, a robot needs to talk to like a button and then push some boxes, and then it 
needs to go drive a car.


So, you can have like, these very complex modalities of things that people need to do, where 
we could say, “Well, if something does solve this kind of environment that it feels like it's pretty 
clever.” But unfortunately, most machine learning engineers are not game developers. So, 
instead of building environments that test out interesting capabilities, what they will do instead is 
they'll over optimize on existing benchmarks like Atari. I think Atari has been so very done. I'm 
sure if you throw a data center at the problem, you can solve most Atari problems, but I just 
don't think that's an interesting research contribution.


That's one. And then I think others are, were more on the language space. Let's say, for 
example, building languages where you can differentiate stuff more easily. Let's say like, in 
Giulia, or languages, like in Haskell, where you can potentially have like these two, three-line 
descriptions for complex neural network architectures. Or if it's something like fast AI, where you 
know, what you're thinking about is like, what are the software patterns that make it easy to 
build machine learning code? So, like the Gang of Four, but applied to ML. What does that look 
like?


So, I think all of these are extremely interesting, but I just don't see any of these ideas, gaining 
much popularity outside of basically a couple of niche areas on Twitter. This is sort of why I end 
my article with saying is that, I've basically been reading papers a lot less. What I've been doing 
more is basically trying to find pockets of interesting people online, and they're just trying to 
figure out what they're doing and that's generally been very rewarding for me. I think that's sort 
of like the challenge. If your expectation is, “Well, I'm going to be in this field, where you can feel 
like a lot of the incentive structures are corroding”, a lot of people feel it, and then you just stay 
in the field and you don't ask any questions. Well, surprise, a couple years later, you're probably 
not going to do anything that interesting. Basically, in the short term, you can benefit from, like 
the hype in the media and stuff. But I think in the long term, this is not a great strategy.


It's actually also why I recommend for a lot of junior researchers, when I wrote the article, one of 
the most common questions I get asked was like, “Should I do a PhD?” And my question to that, 
sorry, like my answer to that was like, “Well, like right now you can make really good money just 

© 2021 Software Engineering Daily 8



SED 1272 Transcript

basically PIP installing stuff. So, why not take advantage of that? Build a safety net for yourself, 
but use the spare time and the safety net, to find other stuff to be interested in and to work on 
and don't over optimize for something that has a lot of hype right now.”


[00:19:33] JM: To take a bit of a devil's advocate approach to your title. Are we actually in a 
great stagnation? Because I see what what's happening is you basically have a confluence of 
some different elements. So, number one, almost nobody can write machine learning 
applications. Plenty of people can write front end web applications. The tools are very easy, 
much easier to conceptualize what you're doing. But you take machine learning applications, it's 
a lot harder. Two, the tooling for the few people who can write machine learning applications has 
accelerated so fast – it’s developed so quickly relative to the surface area of applications that 
we need to build, that we can build, the opportunities that are available to us. That basically all 
the machine learning engineers are tied up doing application development with stuff that they 
know is going to work. So, it's sort of like, who needs to who needs to innovate that much right 
now, when we've got so much ground to cover with the preexisting technological tools? So, I 
would argue that we're not in a great stagnation.


[00:20:42] MS: I actually agree with you. I mean, it depends on what you define the scope of 
stagnation over. Really what I was saying in the article was score ML has stagnated. As in, if 
you think of like the core field, as in people doing sure enough bounds, or proving convergence 
proofs or people innovating on new architectures. I think all of that work may not be as useful as 
people think it is. But of course, like I think when it comes to like deploying these models, I think 
there are sort of almost like a wild west aspect to it, right? Let's say you want to think about 
experiment tracking, there are dozens of startups you want to think about. Managing pipelines, 
there are dozens of startups, you want to think about. Dashboarding, again, dozens of startups.


I think all of these are – these in of themselves aren't necessarily interesting academic 
problems. But they are interesting problems. I think there's no clear a solution to them. Even for 
me, this is something I struggle with at my day job. I'm just trying to think about, what are the 
kinds of tools I want to use? How do I make sure my work is leverageable to the maximum 
amount of people very easily at scale? These are all hard problems. Again, I just don't know of 
all that many academics that work with the stuff like that. Outside of a few exceptions, obviously, 
like people like Matei Zaharia, from like Databricks and stuff. They think about that all that stuff. 

© 2021 Software Engineering Daily 9



SED 1272 Transcript

But there are more people, I guess that would have a hacker leaning, as opposed to a 
mathematician lean. I think that’s again, another area where interesting stuff is happening. So, 
like languages is one aspect. The tooling is one aspect. The best practices for the that tooling 
as another aspect. All of these areas are still exploding as far as I can tell and increasing at an 
exponential pace, actually.


[00:22:18] JM: So, do you see this article as simply making a set of observations or are you 
trying to encourage a call to action?


[00:22:31] MS: Yeah. It's hard for the article to sort of be treated in a vacuum. Because after I 
wrote it, like, I realized that was just so common, like a lot of so many people reaching out to me 
on Twitter or LinkedIn DMs, saying, “Well, what should I do?” I agree, like, I've noticed the same 
thing. So, what should I do for my career? And as far as – I spent a lot of time, I was on vacation 
at the time, too. And I spent, like most of it on my laptop, answering people's questions. A bit 
acting like a therapist where I was going through people's personal situations and trying to think 
through what they were doing. But then I quickly realized that a lot of the themes are tied to 
generally how to manage risk in your career. 


So, I had another talk at USF about it, which is like about managing career stagnation that I 
think is very relevant. Again, after that talk, a lot more people started reaching out to me. So, 
that's why now like, I manage a Discord channel called the robot overlords, which was a spin on 
– the name is a spin on an E-book that I wrote about robotics and ML about two years ago, 
where I basically help people. I guess, the what we call is like, becoming like a sovereign 
researcher is the main theme. What we mean by that is, how can you basically build skills that 
help you get like a few money, so that you can engineer that kind of life that you want to have? 
And not necessarily being too caught up by incentive structures that you see around you?


So, basically, it's like, how can you be very aware of the kinds of incentives in your field, be very 
aware of them. Gain them if you need to basically build a safety net for yourself. But once 
you've built that safety net, I think that's sort of when the interesting part of life starts and, 
basically how to leverage that, whether it's writing research independently on your blog, whether 
it's building a SaaS startup, whether it's writing E-books. I think these are all very interesting 
directions for people. It's also why I think, like COVID, sort of presented an interesting 

© 2021 Software Engineering Daily 10



SED 1272 Transcript

opportunity for a lot of engineers where, in the past, you can imagine, let's say you weren't 
particularly charismatic. It would be hard for you to get leverage and convince a whole bunch of 
people to do something that you want to do at work. But like, if you're a good writer, and you 
write like a compelling proposal or write a compelling weakness for your product or say like, “We 
should fund this thing, and here's why”. I think it's very democratizing, because people will judge 
you for the quality of your writing and the quality of your ideas, and not necessarily for how 
senior you are in the company, or how highly you're paid.


I think there's a very democratizing aspect to all of these. And so yeah, definitely it was a call to 
action. But it wasn't a call to action to people who identify themselves very strongly as 
academics. In fact, I had friends that identify purely as academics who read the article and got 
very mad at me. They just told me like, straight up you don't know what you're talking about, this 
article is very sloppy, and et cetera. At first, I took the feedback to heart and I was trying to get 
to, what are they really saying? Was I sloppy in my thinking? But after going over the article 
again, and again, I was like, “No, it wasn't very sloppy, but you're just sort of threatening a 
worldview.” And that's always dangerous, right? In my case, I feel I'm generally pretty okay with 
realizing, maybe the skill set I invested a couple of years in isn't very useful. That's something 
I'm psychologically okay with. But I do recognize that it is a painful thing to hear. 


However, it helped me attract the kind of people that have these kinds of similar thoughts, 
whether it's through my Discord channel or on Twitter, or just generally people that want to give 
me feedback on my future articles. So, even though the article did ruffle a few feathers, I think it 
helps me meet some of the most interesting people I've ever met in my life. It's also why I'm so 
bullish on writing online anyway, because, again, if I compare it to something like networking at 
a conference, it's very low signal. You basically talk to people because you're in a similar 
proximity, well, maybe because you're grabbing coffee in a similar place. Or maybe they said 
something you thought was compelling at a talk. But I think when it comes to sort of professional 
flushing out ideas, I think that the internet is a much more powerful force than online 
conferences.


[00:26:46] JM: As I mentioned, you work at Facebook. I don't know, if you notice, I just wrote a 
book about Facebook. I spent two and a half years writing a book about how Facebook 
engineering works. So, I have a lot of familiarity with the culture of the company, and how 

© 2021 Software Engineering Daily 11



SED 1272 Transcript

unique engineering is there and how unique people think about it. I actually did not focus much 
of the book on artificial intelligence, or machine learning. So, I don't know a ton about how the 
machine learning engineering teams work there. But given that you're pretty familiar with the 
industry as a whole and you've been at Facebook, I know, you're only been there three months. 
I know you're you're fairly new, so I wouldn't ask you to let go super deep on anything. But I 
would love to hear in broad strokes, because I know how unique Facebook is. But I would love 
to know in broad strokes, how the Facebook engineering approach to machine learning and AI 
differs from the rest of the industry?


[00:27:41] MS: So, what I'm thinking about making the comparison, I think a lot of it will apply to 
just regular – like software engineering at Facebook, without ML. With ML, they are fairly similar 
approaches. So, I think for me, at least the big shocks when I first joined Facebook was one is 
the mono repo. I know people have mixed feelings about it. But I personally really like it 
because I feel like it unblocks me very quickly. I don't know how something works like, well, I 
can just go to the source code. I don't need to go argue with a PM about something and go 
figure out how this thing works.


So, I think the main challenge though, is that because like Facebook doesn't have a cloud 
offering, is that you ended up having like infrastructure internally that doesn't look like what 
people use externally. Generally, isn't an issue for most Facebook teams. But when you think of 
like, let's say, my team, which is the PyTorch team, like this is an issue because like most of our 
customers have – we’ll use something like AWS or Azure or GCP. I mean, that's not what we 
use internally, so that's not what our tooling looks like. So, you ended up having to be aware of 
both sort of the internal and the external world because you have internal customers where you 
want to increase adoption of PyTorch. But you also have external customers where you want to 
increase adoption of PyTorch and make everyone's life a lot easier.


But generally, like I would say, just looking at the culture, there's definitely like an emphasis on 
speed. I think the people I've met at Facebook have been some of the hardest working people 
I've met. So, there's, of course, I can emphasis on getting stuff done very quickly. But then the 
other thing that I really, really love is that I often noticed, sometimes I would see someone who 
would be very active in a lot of internal groups, writing very interesting specs, and they're behind 
a bunch of interesting open source projects. But then maybe there's like out of college, like for 

© 2021 Software Engineering Daily 12



SED 1272 Transcript

two years, and I found this amazing because like generally in other places I've been on. It 
seems that the more senior you are, you're supposed to be the person that orchestrates plans. 
And then basically more junior people or like ICs have to basically go execute. But one of the 
really pleasant surprise at Facebook is that it's very common to see someone who is an IC, who 
can be extremely high impact, and just like basically write specs that determine the outcome of 
what you know hundreds of people

specs that determine the outcome of what you know hundreds of people will work on. And 
they're not going to have a single person report to them.


So, I think that's really compelling and that there's like a big respect for talented engineers. Of 
course, like, they also generally have to be good writers. You have to write something that's 
compelling for other people to read. But the fact that that's even available to you that you can 
just post something interesting on a group and share is great, because other companies I've 
been on, generally, if you want to propose something that's a bit different, you run it by your 
manager, and then they run it by their manager, and then you invite a bunch of more people, 
then you have another kickoff meetings. So, this is all very costly. I think it's very time 
consuming to orchestrate all of these meetings. So, just being able to write down your ideas and 
say, “This is what I think is the right thing to do”, and then have people agree or disagree with 
you directly on the document, I think has been a profound cultural change that I think I've 
personally really, really loved.


[00:30:54] JM: Facebook has, obviously on one side of the framework wars, or I don't know to 
what extent it's a war. Again, this scenario I'm not super familiar with. But I know that Facebook 
has the PyTorch side of things. Google has the TensorFlow side of things, when it comes to 
frameworks. Is this one of these winner take all in the long-term scenarios? Because there's 
other technological paradigms where it's been winner take all like. React, basically, one on the 
front end. Kubernetes won in container orchestration. Is that the case with machine learning 
frameworks? Or is it going to be like TensorFlow and PyTorch for a very, very long time?


[00:31:34] MS: So, the funny thing about this point is like, let's say if you were comparing 
TensorFlow and PyTtorch, like five years ago, they looked very different. But I would argue like 
nowadays, if you're comparing something like PyTorch, to the new Keras API. They look pretty 
darn similar. If you consider that a lot of people are using some top-level frameworks, like let's 

© 2021 Software Engineering Daily 13



SED 1272 Transcript

say stuff like hugging face, which are language agnostic, then it seems to me that in of itself, a 
language, isn't that much of a moat. What matters is the community around it. Basically, are 
people building interesting stuff around it. Is there mindshare? The people have like a feel like 
there's an easy path from research to production.


But I think, no one internally, I haven't seen anyone internally use the term frameworks war, 
because I think it's like – I mean, I don't necessarily think it's like that zero sum and then the 
libraries borrow so much interesting ideas from each other, that I don't think that they represent 
sort of a fundamentally different shift to how you do machine learning. I think the comparisons 
get more interesting, let's say, if you're thinking about like newer frameworks, like Jax, which are 
pretty different. But again, a lot of the best ideas do make it back to the top-level frameworks 
like TensorFlow and PyTorch.


But again, I think there's this easy bias to think of these things as being adversarial. But then 
like PyTorch, is supported on TGPUs. And the reason it's supported on TPUs is because 
customers have asked for it, and then the teams actually work fairly closely with each other. So, 
I think it's easy to imagine that there would be an adversarial relationship, but from what I can 
gather from my short time at Facebook, that just hasn't been the case yet.


[00:33:23] JM: I have done more shows in the last couple years, far more shows, frankly, about 
data engineering, than I have about machine learning. My sense is that there's a pretty 
interesting division of labor between these different departments. How do you see – and I think 
of it as sort of like, pre-DevOps world, maybe? Pre-DevOps, you had kind of an uncomfortable 
division of labor between the people who are operating systems and the people who are writing 
new code. I wonder to what extent today, there is that sort of divide between the data 
engineering infrastructure people, and the people that are building the machine learning models 
and applications?


[00:34:15] MS: That’s a great question. So, the short answer there is, I think, by identifying 
yourself as a data engineer, you're basically just signaling to the market that you want to be paid 
half of what machine learning is doing. The reason I say that is because, if I were to look at like 
–I had this meme, even as well on the stagnation article, but like, let's say data engineering is a 
very thankless job. If everything works fine, you're invisible. So, no one's thanking you when 

© 2021 Software Engineering Daily 14



SED 1272 Transcript

everything's perfect. But when stuff breaks, it's very public. You get woken up in the middle of 
the lie. Maybe there's data that you can never recover, maybe you're losing money. The 
inferences are not working. Something happened with – and it's a very complex system. You're 
dealing with like a billion services in AWS. It’s not like Kubernetes adds another layer of 
complexity on top of this stuff.


So, it's just like very, very complicated. I think because it's so complicated, people imagine, 
“Well, oh, but this machine learning thing, I need to know this complicated stats and stuff.” But 
the reality of it today is that, if you want to use something like a pre trained model, all you need 
to do is W get a model model file, and then load this model with a framework like PyTorch, and 
then just call and model that forward on your inference and get an inference. So, again, I think 
it's one of those things where I hear this a lot as well from junior people, and they go, “Oh, but I 
want to be the person like writing the algorithms.” One of my thoughts to that is like, “Well, it's 
not really that much involved in it.” We talked about stuff like graduate student descent, you take 
something that exists, that you PIP install it, you change a couple of stuff and it works. And then 
you blabber on for eight pages about how it's better.


So, obviously, that's not true for all research. But a lot of research, I think in ML can be reduced 
to a tweet where you say, “I took this architecture. I changed x, here's the plot, it's great.” So, 
this could be a very common format, instead of like the regular eight pages that we use quite a 
bit. So, I guess, my advice to data engineers is often like, I think their skill set is actually more 
difficult and more involved than the core ML skill set nowadays. I think, you just need to know 
just a bit of ML to be dangerous. And what that is, in my opinion, is learning how to load the pre 
trained model. I think, just functionally. But when it comes to like the math of ML, I think if you 
understand how gradient descent works, and how to derive like square functions, that's 80%. 
How to multiply matrices, like that's probably 80% of what you need to be able to read most ML 
work nowadays.


[00:36:46] JM: If you were to point to the most underdeveloped part of the data engineering 
stack, what would you point to?


[00:36:56] MS: So, that's interesting, like because I don't think of any part of the stack as being 
that underdeveloped. What I mean by that is that, if you want to elastically scale models, there's 

© 2021 Software Engineering Daily 15



SED 1272 Transcript

stuff that exists. If you want to do distributed training, like at massive scale, like the Megatron 
work for Nvidia, you could use something like Deep Speed from Microsoft. If you want to do like 
experiment archiving, weights and biases is great. If you want to do AB testing, stuff exists. So, 
for me, it's not necessarily that I think of parts as being underdeveloped, it’s just I think there is 
an overwhelming amount of choice, where it's not entirely clear what's 10x better. So, I just think 
it's a question of people basically settling on a bunch of best practices, and deciding, “Okay, 
well, this is what I think, for example, is the best way to serve models.”


But to your point, as a whole scope, I think that just in general, deploying models to production, I 
think is underdeveloped. But not underdeveloped in the sense that stuff doesn't exist, but just 
like too much stuff exists and it involves just constantly – it reminds me a lot of the early web 
days. So, before sort of React came out on top, this was maybe, I don't know, like 2013 or 
something, I got very interested in web development. I was like, “Okay, I want to learn a bit more 
about this to deploy stuff.” I remember, it felt like a new framework was coming out every week. 
So, I'd be like, “Okay, well, I should be using Angular.” And my people were like, “No, no, you 
should use react.” That’s like, “No, no, you should use Viu.” And then, “No, no, you should use 
Svelte.” This kept happening, like almost on a weekly basis, where I felt like, “Why am I 
bothering to learn about any of this, if whatever technology I'm going to learn is going to be 
obsolete in a couple of weeks?”


So, I'm getting a very similar feeling from the ML ops space. But I think it's good in the sense 
that, you know, having lots of competition is good, because it means that people have lots of 
ideas about the best ways to do ML in production. But I would hope that over time that people 
can somewhat converge to a bunch of good best practices where you think, “Okay, well, I want 
to deploy a model that does some inferences at scale and see all of the dashboards really 
easily.” At least that core use case will be very obviously dealt with by a couple of companies or 
a couple of open source projects. But I don't think we're there yet. Again, I don't think it's 
necessarily a bad thing. I think competition is good in this respect.


[00:39:26] JM: What are the newer AI tools? Well, in your in your article, you mentioned 
Hugging Face. And then you mentioned Hugging Face is one of the more transformative 
companies related to AI infrastructure. I think the world of AI infrastructures is pretty interesting, 
because I think going to market with AI tools is really, really tough for for a number of reasons. 

© 2021 Software Engineering Daily 16



SED 1272 Transcript

One, they're really hard to develop. Two, it's really hard to hire a team. Three, you are kind of 
competing with commodity cloud providers solutions. Four, you're competing with open source 
projects. There are all kinds of things that make building a successful AI tooling company quite 
tough. What are the big category winners in the space? The companies you're excited about?


[00:40:09] MS: Let's talk a bit about Hugging Face because I've met a lot of people over the 
years and I would ask them this question like, “Why do you think Hugging Face is so big? How 
can they capture so much mindshare?” Their number of GitHub stars, like rivals, for example, 
TensorFlow or PyTorch. It's insane when you think about it. It's like a couple of PhD students 
can build something that rivals what billion – like the largest companies in history, can build. 
That's amazing.


So, I actually wrote an article about this called the rise of Hugging Face where I tried to explore 
a bit more, why I feel like Hugging Face became so big. The question is maybe a bit more 
convoluted than just it's a platform company, because I don't think it's a platform company. I 
think it's a platform company and the community company. So, what do I mean by this? 
Traditionally, if you look at the business models of ML, the ones that we're all familiar with, just 
regular from the SaaS days, I guess, is maybe you're a service. I call your API and you give me 
an inference. This has generally not led to a good moat in ML. There are efforts, for example, 
like Microsoft and Azure Cognitive Services. As far as I know, that's been a flop just because 
people like the fact that they can change the thing they're working with. They don't want this 
gigantic black box and like to be privy to this company. They want to feel like they're doing 
something. Then there are the consultancies. Almost all ML startups that I'm aware of that fail, 
because they sort of never get out of the consultancy phase, including my own startup, by the 
way. I was doing like an RL serve like a reinforcement learning service. for game developers. It's 
just really hard to get to a point where everything is self-serve that you have, like the right 
primitives. In your code, everyone thinks stuff is very easy. That's very hard.


Then you have what I call like the media companies, which is like open AI, for example, where 
you build really beautiful and amazing demos that inspire people, but you're not really selling 
them anything. So, effectively, you're somewhat competing against companies like the New York 
Times in this respect. So, when I recently saw that open AI, I decided to also become a venture 
fund, I wasn't surprised at all, because I think it's a great position to be in if you're a media 

© 2021 Software Engineering Daily 17



SED 1272 Transcript

company, because you get basically the smart people naturally gravitating towards you. If smart 
people are using your API, you know who's doing what, and you can basically leverage them 
and fund the right people by having knowledge that may not necessarily be accessible to the 
open market.


Then there are platforms. So, platforms are, you know, again, what we've talked about, it's like 
stuff – you can you can build stuff on top of it. So, I think weights and biases is like a good 
example of this. But then I think Hugging Face was something different, and that I think it was a 
community-based company. Here's really what I mean by that. I think that for a lot of tech tech 
people, we have a similar hustle at this point where maybe you work at a big tech company. But 
you know, you're dreaming of making it big at a big tech startup. Maybe you move to Seattle, or 
[inaudible 00:43:02] you have family there, because work is there. So, you're isolated, you're 
probably not that religious. So, you don't have like a community you're plugging into. So, you're 
coding at work and then you know, to sort of get away from the cycle, you're coding after work.


I think open source communities gives like this strong sense of identity to people, where they 
feel like they're contributing something to something that's greater than themselves. Actually, if 
you look at it, I think the structure of many strong community driven open source startups reflect 
the structures of a lot of religions. For example, like the first Git commit, well, that's the founding 
document. That's like the Bible. But then, you have the main contributor, they're the evangelists. 
They're the ones who decide what gets added to the history. They have means. “Oh, like 
hugging faces, all you need. PIP is all you need.” I think this is insane. Because traditionally, if 
you look at SaaS startups, like they invest so much time in marketing. They'll spend money to 
go talk at conferences. If they want to recruit people, they'll interview like maybe 100 people to 
hire like one person. Whereas with Hugging Face, let's say if they want to hire someone, like, for 
example, like they had a high profile hire in South Vancouver, for example. And the reason they 
hired him was because the guy was already contributing so much to the library. So, if you want 
to recruit people, all you need to do is to look at your Git contributor graph, and just hire the top 
people, offer them a base salary. Tell them like, “Look, it's okay that you can work remotely and 
that's great.”


Another thing is that like, let's say, Kaggle, for a long time became the CV padding thing where 
initially people were like, “Well, Kaggle reflects real world data science skills. But now it seems 

© 2021 Software Engineering Daily 18



SED 1272 Transcript

like almost everyone I see on LinkedIn is a Kaggle master. And I don't think that's a coincidence. 
Because if you tell people like, “Look, if you become a Kaggle master, that's a good way for you 
to get the six-figure tech job.” Then everyone's going to try to become a Kaggle master. Now, I 
think it's like, “Well, if you contribute a data set or a new birth architecture to Hugging Face, then 
that's going to help you and then you can get like a really high paying job.”


So, I think there's so many externalities to being a community driven startup, that you have a 
mindshare, where people want to see you succeed. They want to contribute to you, and this is I 
think, like something an aspect of like, reflectivity that's really become very obvious in recent 
years. So, reflectivity, by the way is just this idea that the more people believe in something, the 
more likely it is to be true. I think we've seen three strong instances of this in modern times. So, 
one is Tesla. People keep saying like, “Well, it's not a car company. It's an internet company. It's 
a tech company.” And that's what justifies the valuation. Same for Bitcoin, people keep saying 
it's a bubble for like 11 years, but it keeps increasing in value. Same for GameStop. Obviously, 
like, you know, GameStop is worth what it is, but if enough people say it's worth something, then 
the stock goes up. The company can sell shares. Now, they have a whole bunch of money. So 
now, they're actually more likely to succeed in their mission than a company that doesn't have 
that.


So, very similarly to Hugging Phase. I think, by virtue of people believing that this company is 
going to succeed, the more likely it is to succeed. You can see this, by the way, in the recent 
press release announcements, they had this very – I laughed so hard, and I saw this line, 
because the CEO literally said, something along the lines of machine learning shouldn't be in 
the hands of like the few big tech companies. It needs to be democratized over the entire 
community. I read the statement, I'm like, “What corporate company would ever issue a PR 
statement like that?” That was kind of punk. It was like, “Look, we're going to bring down the big 
tech companies. This is us. We're the community, like popular revolution, we're all behind this.” 
This is a lot more compelling than we unlock business value for your business. I think this is 
something that again, when people try to value Hugging Face by not putting the community 
equation in it, it's just going to seem like a bubble, when I think it's a very strong community, and 
maybe like a cult. I think a lot of more tech startups are going to be like this. Let's say, Replit is 
another example of this, where you contribute to it. The founder will like personally reach out to 

© 2021 Software Engineering Daily 19



SED 1272 Transcript

you. They'll advertise your project. He'll help you get funding. So basically, giving people a 
sense of meaning when using product tools, I think is hugely underrated.


[00:47:23] JM: The Replit point is really interesting. I guess the the whole idea around building 
a brand and a cult around a project can drive so much usage and adherence and stickiness. So, 
as we near the end of our time, you wrote this article, this was back about a year and a half ago. 
What's changed since then? Do you have any new insights that if you were to rewrite Machine 
Learning: The Great Stagnation today, you would have enumerated?


[00:47:58] MS: So, for example, do some slow edits over. For example, I did briefly mentioned 
biotech. There are some means that I added. For example, the one on like comparing data 
engineers to ML engineers. But actually, I think that the article somewhat stood the test of time. 
That it's true. I think, that not much has changed. I still stand by the bitter like, Sutton’s Bitter 
Lesson is true, as in scale beats out over complex ideas. That it does seem like as far as new 
algorithms are concerned, that we've run out of ideas outside of, you know, basically casting all 
of your problems as a supervised learning problem. I think that was a profound way in which a 
lot of engineers now think like, “Can I cast my problem as a supervised learning problem?” 
Reinforcement learning is actually one example of this. Given observations, predicted reward. 
Self-supervised learning is another example of this. Given surrounding tokens, predicted 
existing token.


So, this framework, I think, of thinking of problems as supervised learning problems, I don't think 
is going to go away. I don't think we've seen the full impact of it yet, because it's a very profound 
way of thinking about problems. I think, though, I still stand by as far as core ML goes, I still 
think there is a stagnation. But I think the outskirts are blowing up and increasing at an 
exponential pace. And so, I think people should be more okay with doing machine learning and 
something.


If you told me, choose anything to work on, I think, probably, for me, the most exciting thing right 
now happening in machine learning is what Unity is doing, which is helping more machine 
learning engineers becoming game developers, because I think games are the most compelling 
data set of all, because they just generate free data. So, I encourage more people to look into 
that and more people to build, online content, online communities, and just be okay. ML has 

© 2021 Software Engineering Daily 20



SED 1272 Transcript

grown up. This is not a bad thing. It's been incubated in academia for decades. Some ideas 
were very powerful, scale and casting your problems of supervised learning. It's okay. Even if 
there's not more stuff – it’s like doing research in classical mechanics right now. I’m sure there's 
some problems left. But they're not like these big problems. I think the big problems are all at 
the intersection of how do we use ML and I do encourage more people to just look at them 
instead of being a bit too attached to what their graduate student advisors were working on.


[00:50:31] JM: Cool. Well, Mark, it's been a real pleasure talking to you. Is there anything else 
you’d like to add in conclusion?


[00:50:28] MS: I think that’s pretty much it. Thank you so much, Jeffrey. I appreciate it.


[00:50:32] JM: Wonderful.


[END]

© 2021 Software Engineering Daily 21


