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EPISODE 1163
[INTRODUCTION]

[00:00:00] JM: Newer machine learning tooling is often focused on streamlining the workflows 
and developer experience. One such tool is BentoML. BentoML is a workflow that allows data 
scientists and developers to ship models more effectively. 

Chaoyu Yang is the creator of BentoML and he joins the show to talk about why he created 
Bento and the engineering behind the project. 

[INTERVIEW]

[00:00:29] JM: Chao, welcome to the show.

[00:00:31] CY: Thanks, Jeff. Thanks for having me. 

[00:00:33] JM: Simple question. When I deploy a machine learning model, what’s the difference 
between deploying that and deploying a microservice? 

[00:00:41] CY: In our opinion it should be the same from the point of view of a DevOps. I guess 
a lot of the model serving tools in this space are trying to treat machine learning workloads 
differently. You will see tools like TensorFlow Serving. It asks data scientists to package their 
entire model into a standard format. And then the way they deploy it is essentially uploading that 
model to a directory and then the TensorFlow server will pick up the model and expose to an 
API. But in our opinion, that’s not the right way to do it. We think DevOps should be able to 
deploy machine workload exactly the same way as they deploy and manage other 
microservices.

[00:01:21] JM: And so what are the main frictions that prevent that from becoming both being a 
seamless, as easy as the other?  

[00:01:28] CY: I think the main challenge here is that when you're talking about deploying 
machine learning models, it's a process that involves multiple teams. Typically you have data 
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scientists training and producing the machine learning model. And then it usually takes another 
engineering team to come in and look at the code, the Jupyter Notebook and the produced 
model files. They will try to refine the code, build API around the model and make sure it has a 
monitoring, login, tracing, everything that's making it production ready. And then this will be 
handed over to DevOps for deploying, operating in production environment. 

And what's so different is that data scientists actually wants to get feedback from those 
production workflows and they want to be able to repeat this entire iteration loop fast and being 
able to make changes to their models and to the serving logic very quickly and get feedback 
again. So that's quite a different pattern than how people used to deploy other microservices.

[00:02:31] JM: Tell me about what you're building with BentoML. 

[00:02:35] CY: Definitely. BentoML is an open source framework for model serving. As I just 
said, when we look at the problem, it's really the friction that comes in between data scientists 
and DevOps where you always require another engineering team to come in and help the data 
scientists move their workload to production. What BentoML is doing, that is we are providing an 
abstraction for data scientists to easily create prediction services in a way that on one end it 
captures all the data scientists needs. It integrates well with all the machine learning frameworks 
and workbench products, like experimentation platforms where data scientists will be training 
and producing machine learning models and allow them to easily patch and wrap those models 
along with all the dependencies and Python code into a prediction service that's ready to be 
deployed into production. 

And on the other end, we provide tools. Allow DevOps and data engineers to easily apply these 
models and make it accessible by other applications or backend services. So for example, the 
same model packaged by data scientists can be deployed as a Docker container and exposing 
the model through a high-performance API endpoint. Similarly, you can deploy the exact same 
model to a serverless platform like AWS Lambda or Knative on Kubernetes cluster. You can also 
apply the same model to batch offline surfing running the model in an Airflow job or in your CI/
CD environment against test dataset or on distributed dataset on a Spark Cluster. 
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So regardless where you're deploying this model, the data scientist does not need to be aware 
of that. They're just using this high-level API provided by BentoML and describe what that input 
and output of my prediction service should look like. What are the machine learning models I 
need to access in this prediction service? And how do I actually pre-process the input data, 
making it ready for my model to write inference? And how do I return the expected data format 
to my upstream service that's consuming the predictions.

[00:04:47] JM: So if I'm a developer, how am I getting started with BentoML? 

[00:04:52] CY: Great question. So BentoML is an open source project. You can BentoML on 
GitHub. And there we have a number of getting started guide and documentations. We also 
have a gallery repository that contains example projects built with pretty much all of the popular 
machine learning frameworks that you can follow along and create prediction service to serve 
your machine learning model. 

The typical experience basically looks like this; BentoML comes in after your machine learning 
model training pipeline. So where you write the code to train the model, to do evaluation, all 
those parts remains the same. After you produce a model, you can use BentoML to basically 
write a prediction service class and specify which are the machine learning model I need access 
to and define the inference API endpoint that will be basically invoking the model. And all that 
are defined in Python. 

So through this prediction service class, data scientists can easily persist it to a standard format. 
We call it a Bento. And then we provide another set of API that allow data scientists to load back 
this prediction service and invoke the Python API to run it against test dataset or expose it as an 
API server. So this Bento format is what we call a standard format for model serving. It captures 
all the dependencies, everything you need to reproduce the exact same prediction service and 
write in the consistent way across all the different serving and inferencing scenarios I described 
earlier, like online serving, serverless serving and batch offline serving. 

[00:06:34] JM: So tell me a little bit more about why this is advantageous for me as a 
developer.
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[00:06:40] CY: Yes, definitely. So without BentoML, you really need to package your model and 
manage that whole process kind of manually. What we've been seeing is that teams spend 
years building internal infrastructure to support their data scientist team. What they've built is 
usually a one-off solution that supports, for example, deploying an extrivous model into an EC2 
instance. But now your data scientist might start asking for support for other ML frameworks. 
They are adding other dependencies to their model. They are pulling in other code repository in 
their company and use that in their serving logic. It just becomes really hard for them to keep up 
with all those demands from the data scientist’s side. 

And similarly on the infrastructure and deployment side, assuming you're deploying your model 
into an API endpoint. But before you deploy it, you always want to have some kind of CI/CD 
setup for your API endpoint. You want to test the behavior of that prediction service. And that, 
you will need some kind of wrapper around your model to allow it to run against the batch 
dataset. And all of that will require custom software to be built around the specific type of 
machine learning framework and a set of dependencies. That just drastically slows down the 
entire process for model deployment. 

As I described earlier, data scientists wants to be able to iterate fast. They want to be able to get 
their model to production very quickly in a repeatable way. And that's the biggest challenge 
here. We are seeing a really bold surface of integration point on both the data scientist the 
machine learning toolkit as well as the DevOps and infrastructure side. And BentoML as a 
standard format in between really helps unifies that entire border lifecycle of model deployment.

[00:08:40] JM: Could you talk more about the common difficulties of a data scientist 
productionizing a machine learning model?

[00:08:46] CY: Yes, definitely. I think one of the most common things we are seeing is that data 
scientists are not necessarily familiar with all the best practice and the common tools people are 
using for creating production services. For example, you will need to expose, instrument your 
code in a way that DevOps can easily set up a monitoring dashboard to understand how this 
service is running. You want to define a way to log all your prediction requests and potentially 
feedback requests so that you will be able to consume that log data later on in your analytic 
pipeline or in your development workflow as well as like tracing or containerizing your API 
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server. So a lot of those things are really not what data scientists are trained to do. So they are 
relying on external teams to help them build that. And that really slows down their iteration cycle 
of getting models to production. 

[00:09:50] JM: So BentoML works to streamline the difficult problems involved in that model 
deployment process.

[00:09:58] CY: Exactly.

[00:10:00] JM: So say more about the format of a model that gets deployed using BentoML. 

[00:10:07] CY: So the Bento format, essentially, it contains the serialized machine learning 
model. It also contains all the dependencies and all the python code you have around this 
model that does pre-processing and post-processing. In BentoML, we actually do a number of 
really user-friendly features such as we automatically figure out all the Python dependencies, 
the packages being used in your training environment. And we are able to actually pinch down 
all the versions of those libraries and save them into a configure file in this standard format. 

It will also contain all the Python code that's being used in your prediction service code including 
other local Python code being imported in a way that people can easily reproduce the exact 
same environment using this standard format. In this format, it also contains files that's making it 
easy for DevOps to use and apply this Bento file. It contains a Docker file that makes it easy to 
containerize an API server that hosts this model. It also contains a Python package configure 
file that people can easily turn this model into a pipeline package that can be used and installed 
in your Python backend application. 

[00:11:29] JM: And how does BentoML make model serving more effective?

[00:11:34] CY: Do you mean on the performance side or more on the workflow and user 
experience side?

[00:11:40] JM: I meant on the performance side, but maybe you could go through the user 
experience side first also.
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[00:11:46] CY: Definitely. I really think the biggest challenge is on the border workflow and life 
cycle management side, and that's what most people are using BentoML for. There's lack of 
standard for managing all the artifacts being produced by data scientists and how did you 
manage all those in the production environment and make sure everything still runs in a 
consistent way? But what we see BentoML’s true value is in that transition from data scientist 
workflow to a deployment and DevOps workflow. One common concern is does data scientists 
know how to actually build a high-performance API endpoint, for example? How do you make 
sure the performance and the throughput and latency, etc., matches your application's 
requirements? So there's one technique we built into BentoML, is called adaptive micro-
batching. And that can easily bring up the overall throughput of your API server to, in some of 
our tasks, 100x over a traditional Python web server hosting the machine learning model. 

What it does is essentially once the API server receives a prediction request, instead of putting 
those requests into a model individually one-by-one, it actually groups those requests into 
smaller batches and run a batch of input data at a time. The reason for doing that is just 
because most of the machine learning frameworks and the numerical analysis libraries under 
the hood are taking advantage of CPU instructions or GPU accelerations to process a batch of 
data at a time. 

Traditionally, when people are building model server and handling one request at a time, it's 
essentially doing the big for loop and processing those items without utilizing all the 
optimizations already built into your machine learning toolkits. So micro-batching really helps 
solve that issue. But the problem with batching is that as the server receives a request from 
client, it needs to figure out how long it has to wait for the next request to come to make a batch. 
So you're basically thinking about trading your latency for throughput. And for some workloads, 
it may not make sense for every request to wait for another second or two seconds for other 
requests to come in. 

So what we've built into BentoML is an adaptive layer that actually runs the lightweight 
regression model. It can predict when the next request will come as well as how much time it 
will take for a certain batch size to process by your model. And that just helps the data scientist 
to get a really good enough performance without spending a lot of time tuning all the different 
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parameters around batching. And in fact, you will need to do that for different type of hardware 
you're using for deploying your model. And with BentoML, data scientists just don't have to do 
that, and we take care of all that.

[00:14:51] JM: So there's a wide variety of different machine learning frameworks to cater to if 
you're trying to build generalized machine learning infrastructure. How do you cater to all the 
different frameworks?

[00:15:03] CY: That's a great question. So when we designed BentoML initially, we are trying to 
make a really generic API for people to integrate with a new machine learning framework. It 
essentially defines how a machine learning model is being serialized to a file format and 
similarly how to load it back in a serving runtime. And by doing that, I think the advantage of 
open source really comes in. 

The BentoML team really just builds integration for some of the most popular, the big ML 
frameworks like PyTorch, TensorFlow, Psyckit Learn, and we are seeing the community helping 
us to contribute support for a wide range of other machine learning frameworks and new 
exciting frameworks. Like we got contribution from Hacking Phase two weeks ago from the 
community, two months back we even got contribution from Apple, adding support for CoreML 
support. So yeah, having the community and a community of contributors helping us to build 
those integration really allow us to support more frameworks in the ML space as we're seeing so 
many new framework and exciting tools that's coming out all the time.

[00:16:18] JM: How does the workflow of a machine learning team change when they adopt 
BentoML?

[00:16:25] CY: Great question. Without BentoML, we are seeing teams that basically building a 
storage layer that stores all the machine learning models being produced by data scientists or 
the training pipelines they produced. But then they will have a separate repository managing all 
the serving code that will be loading in the machine learning model and exposing the model 
through an API endpoint. 
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One of the challenges with that workflow is basically the prediction – The pre-processing code 
are usually bound to certain version of the model. Data scientists, as they are developing a 
model, they sometimes make are making changes to the pre-processing code. And you really 
want to actually version the model together with that pre-processing code so that the prediction 
actually makes sense. But without managing the code and producing model together, we are 
seeing people run into all kind of weird issues after a model is being deployed to production. So 
that's the first issue BentoML helps solve. We actually version the model together with your 
serving logic and all the code associated with that serving logic so that people can have the 
exact same serving and pre-processing logic when serving the specific version of the model.

The second change is that after you have all the necessary code and dependencies and models 
versioned together, BentoML actually provides a centralized repository for managing all the 
models that's been produced by your machine learning team. So through this way you can have 
a much more sophisticated workflow that involves multiple teams in your organization. So on 
one hand you have a team of data scientists that's trending and producing new models and they 
set up training pipelines that are producing new models over time. And every one of those 
training pipelines will basically be producing a new Bento file and they can basically push that 
Bento file to this central repository where others in your organization can come in. Machine 
learning engineers can set up a CI/CD pipeline against this repository and launch a testing job 
whenever there's a new model created. 

Your web developer or mobile developer can easily pull down the new model created by you 
data scientist. Launch an API server locally for debugging and testing their integration with your 
prediction service. Your product manager can come in, check out all the models being created 
and allow it to add comment and review in that process and approve the model before it gets 
deployed to production. And most importantly, DevOps can come in and actually customize how 
a model is being deployed to their own infrastructure and being able to actually customize and 
write code to change how the deployment workflow look like. And then data scientists will then 
be able to utilize those scripts created by DevOps and easily apply and update their machine 
learning models running in production. 

[00:19:38] JM: Do you have an example of like a case study of some team that has used 
BentoML to great advantage?
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[00:19:45] CY: Yes, definitely. So one of our users is Line. One of the most popular messaging 
app from Korea. The Line team has been building an internal machine learning platform for 
years, and they were previously the maintainer of a project called Clipper. That's one of the first 
projects that introduces micro-batching to model serving to. And BentoML, micro-batching is 
greatly inspired by Clipper. So when they look at BentoML, besides micro-batching, they really 
see the value of how BentoML can change their overall workflow. How BentoML can give their 
data scientist interface for them to patch the model, and then in a consistent way the model can 
be deployed to a number of downstream serving infrastructures. So they now actually have 
multiple data scientists teamed across multiple countries using BentoML for serving. And one of 
their largest serving use cases now serving over 200 million predictions per day. 

We are also seeing contributions from the Line team, helping us to build some of the missing 
features they really want. And that's of course one of the largest deployment we're seeing. At 
the same time, we're also seeing a lot of smaller teams who's just started doing machine 
learning model serving and deployment. And from their perspective, besides the model 
packaging and model management, another feature that's really valuable for them is BentoML 
allows a really easy way to get your model to running in the cloud. So we provide something 
called deployment operator. That's basically a way for DevOps to customize how a model is 
being deployed to your own infrastructure. And we provide a few pre-built deployment operators 
for some of the cloud services, like AWS Lambda, AWS EC2, SageMaker or AzureML. So that 
data scientists really just need to run one simple command or just click one button and they will 
get API endpoint running in the cloud without any DevOps involved. So that really gives the 
power to data scientists in the smaller team where they lack the appropriate DevOps resource, 
but really wants to get their model to run in production and give access to their app developers.

[00:22:08] JM: Tell me more about the ongoing operational challenges that a machine learning 
engineer would have that are alleviated by BentoML. 

[00:22:17] CY: So one of the ongoing challenge for BentoML adapters is how do they actually 
manage the deployment workflow when they deploy to a Kubernetes cluster. So one of the most 
common use case we are seeing is that a team will have a DevOps team maintaining their own 
Kubernetes cluster or OpenShift cluster where they will have all their other backend services 
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that needs access to this model deployed there. They have all the feature data that will need 
access by this prediction service available in that cluster. And as they deploy those models to 
the Kubernetes cluster, they will need ways to manage this workload to do a blue-green 
deployment, to run A-B testing and experiments and then being able to easily set up a 
monitoring dashboard for data scientists, being able to collect the prediction logs for their data 
scientists. 

So we're seeing a lot of users rebuilding some of the integrations around that kubernetes 
deployment workflow. So that's what's coming next in BentoML. We think we are going to 
provide an opinion way of how a prediction service can be deployed to Kubernetes as well as a 
number of, I guess, nicer user experience features for data scientists. So they can have a much 
easier access to understanding how their models are performing in production and access to 
the prediction logs and reuse those logs in their development environment. 

For example, they can access all the prediction logs. Run that in their analytic pipeline and 
understand how those predictions are affecting their business metrics. Or as they're producing, 
they’re training a new machine learning model they can rerun the prediction logs with this new 
model and understand how their behavior compared against the previous model in production.

[00:24:12] JM: What are the frictions in model deployment and management that are still 
outstanding?

[00:24:18] CY: I think for model management, there are really two types of model management 
tools out there. One is for people to use in the model development phase. Say, your data 
scientists are launching 20 different experiments with different parameters and then trying to 
figure out which one has the best performance and select the model. So you need something to 
manage all those experimentations and all the models produced by those experimentations. 
And we are seeing a large number of tools that are doing that and call themselves model 
management. But on the other hand, after you've set up a training pipeline, now you're 
producing and training a new model daily with a new dataset. You need another two to manage 
models that's more designed towards deploying those models. Managing the models that are 
ready for deploy in production and serving production traffic. So we really don't see any two 
other than BentoML out there that's doing model management to design for deployment and 
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serving. So that's why we don't want to reinvent the build. So we build this model management 
layer around BentoML. 

The challenges around deployment, I think it comes back to there are so many different types of 
ways for people to run the machine learning model. And for each type of model serving 
scenario, like online API serving, serverless serving, batch serving, streaming serving. For each 
type of serving use case you will also have a large number of different cloud platforms or open 
source platform you can choose. And similarly, for a team to build that type of integration 
themselves is really hard. But as an open source framework, and we design more generic APIs 
for people to adapt, we really enable the community to build integrations and deployment 
operators to support that wide range of different platforms. 

[00:26:17] JM: So it sounds like the real struggle is in the API surface and just the fact that 
there's so many different integrations that need to be written.

[00:26:25] CY: Exactly. Our team actually spent a lot of time designing that API and iterated with 
end users over time. I think the project has been around a little bit over a year, but at least this 
first six months or eight months we've been making big changes around the API multiple times. 

[00:26:47] JM: So you're not just an open source project. You're a company. What does your 
company do?

[00:26:51] CY: So we started the open source project as a company and we are planning to 
build more enterprise features around this model deployment and model management layer. So 
similar to many other open core companies, we think the success of the open source project is 
definitely tied to the success of the company. We want to have as much people adopting 
BentoML open source as possible. And we are basically giving out all the core features around 
model packaging and model serving, high-performance API serving and batch serving, etc., into 
this open source framework, the core of the library. But there are also features around the 
model management, deployment layer that's more linear towards enterprise-grade features 
such as single sign on, account management, access control, auditing logs. So those would be 
the additional features that we are selling to big enterprise customers. 

© 2020 Software Engineering Daily 11



SED 1163 Transcript

From a developer's point of view, I think that make a lot of sense as an open source model just 
because most of the enterprise features are not exactly fun to work with. You probably don't get 
too much contribution from the open source community. And it takes a lot of time and effort to 
actually build and maintain that set of features and makes perfect sense for us to offer as an 
enterprise-grade feature. And as we grow, the business grow, we’ll have more resources 
deployed to the open source side, which benefits the entire community.

[00:28:26] JM: What have been the struggles of starting a company in this space?

[00:28:29] CY: I think the first step struggle is we originally tried to build a proprietary version of 
the model serving and deployment tool that we are building today. And it's really hard to sell 
such a product in such a noisy space. We started a company about two years ago, and when 
we show a prototype of our model serving product to data scientists, people love it. But when 
we show that to their bosses, their VP of eng or head of machine learning, the first question they 
will ask is, “Why would I choose you over, say, AWS SageMaker or Google AI platform?” And it's 
a hard question to answer, because we know even if we are in their position, we will not trust a 
startup of just a few people over the cloud provider where they have much stronger engineering 
resources. 
But I think that entire situation has changed ever since we pivoted to building open source. We 
have a strong community around the project as we grow. And now we are seeing enterprise 
customers, big companies, switching from Google Ai platform and AWS SageMaker to doing 
serving with BentoML, and we think that's just something we would never be able to achieve 
with a pure high-priority software. 

I think another struggle is just how crowded and how much other products are in this space and 
being able to really articulate the benefit of BentoML solution in comparison with all the other 
different solutions and open source projects in this space. It's hard. It's very hard.

[00:30:14] JM: What's on your roadmap for BentoML? 

[00:30:17] CY: So we actually share a more comprehensive list of the roadmap on our GitHub 
discussions. So that will have all the detailed timeline, including the features we are building. 
But at a high level, we think the first thing we want to do is make it even easier for data 
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scientists to build prediction services. So adding features around how to debug a prediction 
service as they're building it. Adding more documentation and examples around different ways 
and the common challenges people will run into when creating a prediction service. 

One of our users says that BentoML feels like Ruby on Rails for machine learning, and that's a 
really inspiring quote that we think traditionally people think data scientists are not supposed to 
be building prediction services and deploying them to production. But in our opinion, there's not 
good tools for them to do that. And we think BentoML is in a really good position to make that 
possible for data scientists. 

The second big item on our roadmap is deeper integration around the Kubernetes ecosystem. 
Most of our larger enterprise users are deploying BentoML to Kubernetes today. And as I 
mentioned earlier, there's a lack of deeper support around the user experience, around 
managing the deployment and experiment workflow on Kubernetes for data scientists.

[00:31:46] JM: Okay. Imagine it's five years into the future. How does the machine learning 
tooling space look different?

[00:31:52] CY: Great question. The way machine learning teams are managing the workflow for 
serving and deployment today really feels just like uploading PHP files through FTP to an 
Apache server to host your web application probably 10-15 years ago. And we think all that will 
be changed five years from now.

What we're seeing today is that DevOps and engineers are treating machine learning workloads 
so differently. As we talked about at the beginning of the show, people treat ML workflow 
completely differently than other microservices. And they are using patterns such as uploading 
the model directly to an API server as it's running in production or rebuilding the pre-processing 
code after a model is trained and have no way to version that code and tied it back to the right 
version of the model. And there are just way too many ways you can introduce issues and bugs 
into that workflow. It almost feels like what software engineer and deployment looks like before 
Git or before Docker, and everyone is trying to figure out the right way to deploy a software. And 
we think that will drastically change in five years from now for the machine learning world as 
more and more people started putting models into production. More and more people start 
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understanding why they need to do CI/CD? Need to run tests against your model before 
deploying? What are the best practices for getting model into production and monitoring those 
models? So that’s really BentoML’s vision. Giving people this essential building block to get to 
that ideal workflow.

[00:33:48] JM: Well, that sounds like a good place to close off. Chaoyu, thank you for coming 
on the show. It’s been great talking.

[00:33:52] CY: Thank you, Jeff. Thanks for having me.

[END]

© 2020 Software Engineering Daily 14


