
SED 1153 Transcript

EPISODE 1153

[INTRODUCTION]

[00:00:00] JM: For all the advances in software development over the years, one area that has
been minimally improved is the terminal. Typing commands into a black text interface seems

antiquated compared to the dynamic flashy interfaces available in web browsers and modern
desktop applications like Slack. Fig is a visual terminal assistant with the goal of changing that.

Fig sits next to the developers normal terminal and enhances the terminal experience. The
founders of fig Brendan Falk and Matt Schrage join the show today to discuss how Fig works

and why it's useful to having an enhanced terminal.

[INTERVIEW]

[00:00:42] JM: Guys, welcome to the show.

[00:00:44] MS: Thanks for having us.

[00:00:45] BF: Great to be here.

[00:00:47] JM: Every developer is familiar with a terminal. What is a terminal used for?  

[00:00:52] MS: I mean, the terminal is one of the few tools that is useful for developers
regardless of what your stack is, what language you’re working on. It’s kind of the lowest

common denominator. And so, again, when Brendan and I have been of coding, we use it for
everything from running tests, from deploying code, managing orchestration. Really, the full

gamut can be done in the terminal.

[00:01:16] JM: And how much is the terminal advanced in terms of sophistication over the last,
let's say, 20 years?

[00:01:23] BF: Not much at all. Matt definitely knows the history, but you look at the terminal in

the movies in the 1970s, it hasn't changed very much.

© 2020 Software Engineering Daily �1

SED 1153 Transcript

[00:01:35] MS: Yeah. I mean, I think the last big kind of update to it was the BT100, which is like

what gave you kind of the ANSI escape codes and lets you move the cursor around. And people
have innovated a little bit with newer shells. But fundamentally, you’re using the same

technology that the earliest computers were running.

[00:01:53] JM: And you guys work on Fig. Explain what Fig is.

[00:01:57] BF: So Fig makes developers more productive in the terminal. General idea is we
help developers build apps and shortcuts that streamline their workflows in the terminal. And

then we let them share these apps with their team or the community.

[00:02:13] JM: What's an example of an app?

[00:02:16] BF: So curl is a command that people use all the time when you want to make an
HTTP request. You always forget the flags for curl. You always forget how to escape certain

characters, and you end up by the defaulting to a tool like Postman, which is really heavy
application on your desktop. Or you Google like what are the exact flags for curl. And it sort of

takes you out of the terminal. And all you really want to do is make a quick HTTP request.

So what we have done is we sort of took the UI of an app like Postman. We brought it into your
terminal and now you can just type Fig curl, and all old keyboard-driven, you can build an entire

code request and then use a keyboard shortcut to run it in your terminal and you don't have to
worry about memorizing the flags, memorizing the escape codes, that sort of stuff. So that’s just

one example. But we have apps from navigating your file directory all the way up to configuring
sort of Kubernetes deployments and orchestration or – Well, we've got so much.

[00:03:12] MS: Like running Postgres servers, everything in between. FFmpeg commands.

[00:03:16] BF: Yeah, and anyone can build one of these.

[00:03:20] JM: Give a specific example of a Fig app that people might build.

[00:03:25] MS: So again, going back, we started with this idea assuming that novices would be

© 2020 Software Engineering Daily �2

SED 1153 Transcript

the one to get most value out of it, because they're the ones who may be haven’t been using the

shells since they were five-years-old. They don't know all the kind of more arcane UNIX
commands. But when we launched over the summer, we discover that there's a huge class of

developers who find themselves in the terminal for work. Again, maybe they know Kubernetes
slightly or they know Docker and they had some of the commands memorized. But there is a ton

of overhead and there is all these processes you don't just do every day.

And so those are the kinds of apps that people are building for themselves. It's taking a process
that they may be running the terminal a couple times a day or a couple times a week and then

wrapping it in a UI so that they can share with their team and share it with members who are
maybe less comfortable in the kind of text-only environment.

[00:04:17] BF: So more specifically, an example would be something like – Is it DBT?

[00:04:22] MS: Yeah, DBT.

[00:04:22] BF: So we’re working with a team. We won’t say to the company name, but they’re

big analytics team and they use DBT. We've never used DBT before. But they just had this
really long like string of commands that need to put in every single time they use this thing. And

they’re data scientists, they don’t want to be doing all of this complicated stuff. And so what
we've been enabled to build is just a really short sharp UI that lets them put in some

parameters. It actually constructs the command sequence that they need to run for them.

Almost like an easy way of building a shell script essentially, and they can click a button and it
runs it. And then they’re back to doing what they do best, which is analyzing data not messing

around in the terminal.

[00:05:05] JM: And for those who have not seen Fig, can you describe in more detail what the
UI looks like?

[00:05:12] MS: Yeah. Basically, Fig isn't trying to replace your terminal. We want to be a layer

on top of it that you can use when you want to when it makes sense, but then you can drop
down to a lower level of abstraction when that's the right choice. So what Fig does is it connects

© 2020 Software Engineering Daily �3

SED 1153 Transcript

to your existing terminal as a sidebar or kind of a window next to the terminal. And when you run

a Fig command, it'll open up a UI there, and then that fills in the information and lets you have
this visual window into a terminal command.

[00:05:43] BF: A crazy analogy is, if you remember, Clippy in Microsoft Word, that sort of you

could drag it around and it was always there. It was always popping up suggestions. Like we
hesitate to use that example, because everyone is sort of – Clippy was there, but it wasn’t

actually that useful. So we have that sort of idea of you have your core application, but then
wear this productivity layer on top that actually lets you enrich and extend what you're already

doing and just make you much faster.

[00:06:10] JM: So there're different plug-ins that fit into the Fig module. Can you talk about who
writes the plug-ins and what they look like?

[00:06:18] BF: Sure. We had this evolution. As Matt said, we launched over the summer. When

we first started, what we had built was the ability for you to build a web app that can also read
and write to your local shell. And so it was literally anything you could build at HTLM, CSS,

JavaScript, plus the power of running shell command, Bash commands, whatever it was on your
computer. That is what you could build. So anything you can sort of build on the Internet, you

could build with Fig.

What we realized is that's great, but it takes time to build a good web app. And so what we did
was build our own sort of structured UI, the idea being we want you to hear about Fig and sign

up to it and then have built an app for yourself over your team in two minutes. And so we built
these things called interactive runbooks, which are essentially you can build a document in

Markdown, like the simplest programming language, if you even want to call it that. And then we
wrote a tiny little scripting language that lets you – That sort of adds form components, like

dropdowns, imports, checkboxes, those sorts of things, plus the ability to read and write to the
shell.

We still sort of call them apps. We’d call the interactive runbooks just because we make that

separation. But the idea is you can build anything that you can sort of build in a shell script and
anything that you would build and you’d write down in Notion or Confluence or one of these

© 2020 Software Engineering Daily �4

SED 1153 Transcript

other documentation tools. But have it actually live in your scripts folder. And that means you

can just streamline all of these tasks that you’re often context switching out of the terminal for.

[00:07:46] MS: An the deeper integration means we can do smart things. So say you’re forking
a database. We can run a shell command in the background to pre-populate a dropdown with

the list of all your local databases so you don't need to find that data by running the command
yourself.

[00:08:02] JM: What's been the hardest engineering problem in building Fig so far?

[00:08:06] MS: That a really interesting question. I think probably, with the terminal, there are

just these layers of standards that build up over time, because it's such an old and kind of
fundamental application. And so we didn't want to rewrite the entire terminal from scratch. So

what we’ve had to do is kind of retrofit to existing terminals. And that's kind of required doing
some hacky things on the shell side and then also using the accessibility API for Mac to connect

to the various Windows that you’re using.

[00:08:32] JM: Can you go a little bit deeper on that?

[00:08:35] MS: The accessibility API is just one of these is Mac low-level frameworks that gives
you more access to certain window components and stuff. So like, normally, you would use this

to build a screen reader or something. But what we’re using it for is to connect this window to
your terminal.

And then the other kind of interesting set of challenges we’re run into. And so our newest

product is called Auto Complete, and what we’re trying to do with Auto Complete is allow you to
have the kind of experience of a modern IDE in the shell. So as you’re typing CD, we can start

popping up and pre-populating the list of folders in your current directory and so you can drill
down through your file structure without needing to run LS every time if you don't remember the

exact path there. So that’s been kind of than the newest thing we’re working on. And that's
required building out our own shell parser, our Bash parser, and then building a full kind of auto

completion engine that allows us to kind of predict what you're – Not predict what you’re going
to type. But like give you smart contextual suggestions.

© 2020 Software Engineering Daily �5

SED 1153 Transcript

[00:09:37] JM: And there's also a form of documentation for terminal workflows with Fig. Can
you talk about the terminal workflows and the documentation for that?

[00:09:48] BF: I think – are you referring to the interactive runbooks?

[00:09:51] JM: Yes.

[00:09:52] BF: Okay. Yeah. That is literally markdown plus a little bit of our own scripting

language. We call these apps or these documents run down documents. And the idea is you
can type in Fig runbooks and in the same way, GitHub. You have multiple repose, which store

your applications. You can sort of store your processes and workflows centered around the
terminal in this mini-Fib runbooks app that we built, and you can just build them locally inside

the application. And then just with a click, you can share them with the world in the same way
you can sort of make anything public and open source on GitHub. Or if you want to just share

them privately with yourself or your team, you can publish them to the cloud. We’ll host them,
but anyone in your team can now go type in Fig, the name of your sort of company identifier,

and then the name of one of these runbooks.

And so for instance, Matt and I use Fig to build Fig, and whenever we need to – Let’s say we’re
publishing a video or we’re a deployment or something like that, we just open up the relevant

runbook, which not only has the documentation, but actually lets us quickly type in, “What is the
name of this file? What is this location?” those sorts of things. And then we click a button and it

does that entire process for us. And we don't have to leave the terminal.

[00:11:12] JM: How does Fig help developer teams?

[00:11:15] BF: Our current focus is actually more on the individual developer. We really, really
want to nail that. like you download Fig and you don't need your team on it. You don't need the

rest of the world on it. You are immediately getting used out of Fig from day one. Our plan is
obviously to go into teams. Our plan is same with sort of GitHub adds value individually, but at

the end of the day, when you open up to teams, you can add a lot more value.

© 2020 Software Engineering Daily �6

SED 1153 Transcript

So for teams, things like these runbooks, these processes that everyone on the team is doing.

And a lot of the user interviews we had, and even when we signed up, when we had our product
hub launch, we had thousands of people sign up. One of the interesting things was a lot of

engineers who’d been an engineer for 10 years or more signed up. And as Matt said at the start,
we thought that this was going to be a tool for novices, like beginner. I've never used the

terminal. I don't know how to do anything at all. And what we realized is your problems when
you’re an advance engineer are not CD and LS and navigating the terminal. It is Kubernetes,

and Docker, Compose, and like all of these other crazy CLI tools, these monolithic tools. And
what happens is a CTO might write tons of scripts that automate all of these processes. But the

people who end up using them are the people who’ve been at the company for the past five
years or more, or the CTO, him or herself. And then everyone else sort of gets left behind and

they end up bugging their senior engineers saying, “How do I do this? What are the input
parameters for that? There’s an error with this.” And documentation goes stale. No one ends up

using the tools which are designed to make you faster. And what's the point of having all of
these tools if no one's actually using them?

And so Fig for teams is – Well, it's the best of both worlds. It’s the best of having sort of

something in notion, and that it's discoverable. There’s some sort of hierarchy to it. Actually, you
can read through it and go, “Oh! This makes sense.” There’s that discoverability layer. But at the

same time, there’s the speed layout of I can run this like a shell script essentially. It is as fast as
me doing ./build or something like that. And that enables the advanced engineer is to be quick,

but then the newer engineers to be just as quick as the advanced engineers from day one.

[00:13:29] MS: An what’s cool is we’re seeing some organic adoption. So if somebody in an
organization writes a runbook, the natural thing to do is to share it with their teammates. And

we’re still in beta at the moment, but that’s been a large way we onboard new users to the
platform, is in the form of like their team asking for access.

[00:13:48] JM: So the vision here is actually to have an app store where people can build

different GUIs for different tasks. Tell me about the app store vision.

[00:13:58] BF: So we sit a lot like GitHub, that these apps that you build, they can be useful for
yourself and useful for your team. But in the same way, you can just open source something

© 2020 Software Engineering Daily �7

SED 1153 Transcript

and make it public on GitHub. We want to take that whole world, but hyper focus it on the

terminal. So I may build – We’re talking earlier about DBT. I may have these processes in the
terminal that are really long and complicated, but I have to do them for myself or for my

business. But chances are someone else in the world has that same problem. And so why can't
you just say just let anyone do this just like GitHub?

And then what we imagine is we say app store, and maybe a better analogy is sort of like a

browser, which is why should I – you often search things in Google. You get an error in your
terminal. You look something like that and you end up on the – Really far down, some GitHub

issues page or on the fourth answer and stack overflow because the correct answer was
marked correct five years ago and things have really, really changed.

Google is fantastic for general search. But when it comes to actually developer search, it isn't

actually as good as you would hope it could be. So we imagine this world of, “Well, I’m in the
terminal. And, hey, why can’t I just type in Fig?” It pops up this little browser for developer

search for terminal-specific processes. And I search how to speed up a video in FFM peg? And
someone in the world has faced that problem before, has built a little runbook or app for it, and it

just pops up on the side of your screen. You do that exact process, and then you're done.

And the same with UNIX, you can chain commands together. Well, why can't you do that with
Fig? Why can't you speed up a video and then reduce the file size and then something else? So

we imagine this world of these tiny little apps essentially that and components that are hyper
focus on one specific task and it's all – You never have to leave your terminal.

[00:15:59] JM: The GUI itself for Fig. So it like hooks on to the terminal. How is that actually

built?

[00:16:06] MS: Like I mentioned earlier, that's built using the accessibility API on Mac.

[00:16:12] JM: Is that kind of a hack?

[00:16:14] MS: It is a little bit of a hack.

© 2020 Software Engineering Daily �8

SED 1153 Transcript

[00:16:15] BF: Oh, yeah.

[00:16:16] MS: Because, again, going back to something we said earlier. It’s like it’s very hard

to build a terminal from scratch. There is a lot of moving parts. There are old protocols, and
everybody uses the terminal in kind of their own way. And so we realize kind of when we’re

getting started, that if we wanted to validate this idea quickly, it would take way too long for us to
build a terminal from scratch. And then also, we had no guarantees that people would

switchover and use it.

So we wanted to make something that was useful that allowed developers to keep using the
tools that they were already comfortable with and get a chance to try out Fig without kind of

replacing everything they already are doing. But going forward, at some point, we would love to
kind of reimagine what a modern terminal looks like and sort of basically take the hack and turn

it into a fully-fledged terminal of its own.

[00:17:03] BF: We just went through YC, and YC's big thing is move quickly, move fast, break
things, all of that. And they’re one of the reason why we built it like this. But we had a sort of 10-

week spring. And what we really wanted to prove was that terminal augmentation is something
that people actually want. It really hasn't changed since 1970. There must be something else

here. There must be a thought, like more productive ways to do certain things. And so rather
than spending literal years building the perfect terminal and spending all of our time making sure

the basics actually work, what we did was exactly as Matt said, we sort of attached on and add
this extra layer. Yes, it is a hack, but if people are using this, then we have a very clear signal

that, “Okay, terminal augmentation is something people want. Now, let's go back and build the
best terminal having spent all of this time working out,” one of the core things that people really,

really need.” And so just, one, it’s a good way of us helping users quickly. And two, its’ a good
way of us like prioritizing what we build when we built the new terminal.

[00:18:09] JM: So you must've built some kind of protocol between the accessibility APIs. Like

you must've layered over the accessibility APIs to have some consistent interface that is at least
much easier to interact for the average developer. What’s the shim that you built over those

accessibility APIs?

© 2020 Software Engineering Daily �9

SED 1153 Transcript

[00:18:30] MS: Yeah. So the way we think about Fig – again, Brendan mentioned this earlier, is

sort of as a browser. And again, under the hood, we are using web technologies, but we’re not
an Electron app. To offset any worries. We’re built in Swift. But what we like about the web is

that it makes it really easy for people to build something quickly, approve in kind of rendering
engine that is used by all these incredible sites and there’s lots of mature tooling around it. And

it gives you kind of cross-platform capabilities out-of-the-box.

So what we’ve done is we’ve let you run shell commands and have kind of deeper access to the
native system through a JavaScript bridge. That you can run code through Fig and it can run a

shell command on the user’s behalf. It can read from the file system so they can access their
local files. And yeah, that's basically the sort of bridge that we built out between the local system

and the app store.

[00:19:26] JM: So let’s say I’m a developer working on my newest Fig app. Let’s say I want to
build a Fig app that allows you to listen to a Software Engineering Daily episode based on what

terminal commands you've entered in recently, for example. Something dumb like that. What am
I doing?

[00:19:44] BF: Sounds great. Okay. The idea is you want to build based on the terminal

command you’ve entered recently, you want to match that up with the Software Engineering
Daily. So you could – Well, you could run a shell command on your computer, which gets your

history. You can use JavaScript to parse your history rather than using like shell or Bash or
whatever shell you’re using. And then you can just use web technologies to hit some API end

point that you’ve set up and essentially return the suggestions and then just web technologies to
render the output. So that’s one version, is you build a web app, and the way you get a lot of the

data is by running shell commands on the user’s local computer.

And then another version is you can build one of these interactive runbook. So rather than doing
all of the UI and whatnot yourself, like we handle all of that, and you can just build this sort of

underlying technology. So you could have a little app that built entirely in Markdown. It would run
a shell command. You maybe would have to do some the parsing, more in Bash in this case.

But can we do webhooks? We can’t do HTTP yet in these runbooks, but you could type in a
specific command, for instance, and use like a call request to hit an endpoint, get the output,

© 2020 Software Engineering Daily �10

SED 1153 Transcript

and then we can just display that in Markdown for you just like a list. It’s very, very simple. And

that would take you like – If you had the right API endpoint set up, that would take you probably
2-1/2 minutes to build.

[00:21:16] JM: I guess this is definitely something you cannot open source, right?

[00:21:19] MS: So I think the long-term goal actually is to open source a lot of these stuff. And

all of the apps that we’ve built on top of kind of the core Fig browser are open source. And then
once we start developing our new terminal, I think that that's probably going to be open source

from a very early stage. But yeah, these are questions that we've been thinking about, and we
really – We use a lot of open source technology and want to give back to the community.

[00:21:45] JM: Give me a little bit more detail on the lifecycle of the execution of a Fig

command.

[00:21:52] MS: So if you run Fig command through the JavaScript bridge that we’ve set up, it
kind of goes through to the Swift app itself, which then runs the shell command on the user’s

behalf and then returns whatever error codes or texts that’s passed back to the JavaScript.

[00:22:10] BF: And then if you are asking about a CLI command, like I type in Fig curl and it
opens up the curl app, then that is – Matt, you’re obviously the one who should be answering

this, but I’ll give it a go. It hits a CLI. Like we have an executable installed on your computer.
Then that is hitting the Swift app. And then that is doing all of the parsing that we need to work

out. What do you actually want to do? And then that's – Is it opening a window? Is it giving a
specific output? Is working out of Fig? Whatever it is. And performs the action based on that. So

just like any other CLI tool.

[00:22:46] JM: So the code that interacts with the accessibility APIs in the terminal, that’s Swift
code?  

[00:22:51] MS: Yeah.

[00:22:52] JM: Cool. Did you guys know Swift before you started working on this?

© 2020 Software Engineering Daily �11

SED 1153 Transcript

[00:22:56] MS: So I've been like an iOS Mac developer for ages, which is one of the reasons
why we went with Swift, rather than trying to do this in Electron. And yes, it is a great language.

It is much more pleasant than the JavaScript in my opinion. The Typescript is maybe changing a
little bit. But yeah, I've been writing Swift for a while.

[00:23:14] JM: So how does the experience of a developer that uses Fig compare to one

without Fig?

[00:23:20] BF: And this is not building an app in Fig. This is just I’m a first-time –

[00:23:23] JM: I’m a developer using Fig and I've never tried it before. What am I going to be
surprised by? What am I going to like?

[00:23:30] MS: So out-of-the-box, one of the things that Fig does that’s really cool is as you're

typing in the terminal, say, you're typing out a Git commit or a Git push, it can start generating
suggestions for you so you don't need to type everything out. And it can sort of auto completing

the branches that you're on or the remote servers that you’re trying to push something to.
Similarly, when you're kind of seeding through your directory, your file directory, you can pre-

populate the different folders that are there. That’s kind of out-of-the-box what you're going to
see as you install to Fig. But then there is this sort of app ecosystem that’s there as well when

you kind of explicitly callout to Fig. If you run Fig dirt to open the file navigation, or if you run Fig
curl to get this sort of Postman-like UI.

[00:24:13] BF: It is sort of what the – when we first started, it was really the value you were

getting out of Fig is that it's a super extensible application that it’s very hackable. You can build
on top of it. You can build whatever the hell you want on top of it. And we build a bunch of proof

of concept. So okay, curl was the sort of obvious one. Everyone forgets the flags. You can use
the Fig curl app that Matt and I have built. But really, you know your problems way better than

we do.

And so our focus has really ben, for at least the early stages, on let's make this as easy as
possible for you to build your own applications and streamline your own workflows. Then we

© 2020 Software Engineering Daily �12

SED 1153 Transcript

sort of started building our own apps. We have the curl app. We have a node’s app, where,

okay, I just learned a new command. I’ll probably going to forget this in a week. So where do I
write these nodes? And you end up defaulting the Mac node’s app, or to some other place that

is just not the right place for them.

So you can install your nodes in Fig. It’s an obvious place to do that. And then the last thing,
what matches that, is we want – When you download Fig for the very, very first time, how can

we give you that aha moment that, “Okay, fig is awesome. I’m going to stick with this for a long
time.” And that is auto complete. It’s such an obvious thing that IDEs give you. It's weird going to

an IDE that doesn't have auto complete, or Google searching something without auto complete.
And it's crazy that the terminal doesn’t have that. And so we’ve sort of built the infrastructure

that lets CLI tools build auto complete much cost of the building it using the old sort of
completion specs in Bash or the new Z-Shell completion specs.

And now rather than hitting tab, it can actually just pop up and like, “Oh, crap. What's that AWS

command that lets me create a new S3 bucket?” Or, “Oh! What does this command mean
again? I vaguely remember seeing it. But I’d like to learn it.” And the same way you could do this

with IDE or auto complete. You’d never have to leave your terminal. It all just pops up. And
importantly, it's not annoying. That was one of the big things we wanted, is the worst thing would

be auto complete, but when I want to hit enter, it adds a new command or something like that.

So we’ve really built it with stay with your existing workflow, and we augment that existing
workflow. And if you want to buy into the Fig ecosystem even more, you type in Fig and it pops

up our app store. Or you type in Fig curl, then it pops up the app. But you can keep your exact
same workflow, and Fig is adding value straightaway.

[00:26:29] JM: What would you like to see people be able to build with Fig that they can’t build

today?  

[00:26:35] MS: I think that for a lot of people, the terminal can be a little bit scary especially
when you're getting started. And so anything that can just take away the pain and kind of

confusion of setting up a development environment, of installing the right dependencies. I think
that that's a huge opportunity. As well as a lot a lot of kind of the existing CLI commands. Again,

© 2020 Software Engineering Daily �13

SED 1153 Transcript

Heroku has an incredible CLI tool. It has great documentation. But how much better could that

experience be if you didn't even need to go to the browser to look up how to do something? It
was auto completed or auto suggested as you were typing it in the terminal. Or there was the

runbook for getting set up with a new node Heroku app. So those are the type of things that I
think really would add a lot of value to the community and are things that we’re actively trying to

build up.

[00:27:20] JM: The AWS examples. So AWS has a huge surface area. So what's the design
process for somebody building AWS-related fig apps? How do you cover that surface area?

[00:27:35] BF: Yes. So two things. One, because we have a bunch of little products – Not little.

We have the auto complete product. We have the runbooks. We have the Fig apps. We thought
when we started that we could build the Fig AWS app and it would do everything. And that

already exists, and that is called the AWS Console, and that is – You can speak to any
developer. Not the most ergonomic place to go when you want to get stuff done unless you’ve

like lived and breathed the console for a while. And so what we realized it's actually very
modular. When I'm working with AWS, often, I want to do something with credentials. Often, I

want to set up an S3 bucket. I’m working with EZ2. I’m doing something with containers,
whatever it is. You have that workflow, which is often pretty – There is a workflow that is actually

standard across. There’s definitely a workflow that’s standard across teams and likely standard
across other companies and individuals.

And so what we ended up doing is what I was talking about earlier of the modularity. What if we

could build the little runbook that makes it easy to set up an S3 bucket? And then the little
runbook that makes it easy to delete another S3 bucket? What if can then let you add files to it

really? Like all of these little things that rather than having one application that does absolutely
everything, it is just one thing that is like very, very specific, and then you move to the next thing

that's very specific, and you can chain them together.

And so our dream is you type in Fig, opens up our app store, and then you can search how to
set up AWS S3 bucket. And maybe 3, 4, 5 million people have built these runbooks, and

because the community is sort of ranking them, you get very quickly at the top. Maybe AWS has
built the official runbook that does it, or maybe someone else has built the runbook that lets you

© 2020 Software Engineering Daily �14

SED 1153 Transcript

do it.

[00:29:13] MS: You can think about it a little bit like NPM, but for tutorials or workflows. So just

like you would kind of go Google something when you're getting started setting up a Postpres
server or instance or whatever, you could do that now in your terminal and it will give you the

canonical way to set it up and then can pre-fill in certain values and stuff.

[00:29:33] JM: How else do you see Fig evolving in the future?

[00:29:37] BF: We want to build our own terminal. That’s the main goal. Yeah, our key thesis is
terminal has been updated since 1970. Here’s a tool that is used by software engineers,

hardware engineers, data scientists, sales engineers. This is the one tool that binds any sort of
engineer together, and it hasn't been updated in so long. It's crazy. So that's really where we

want to go here. And we want to build it with the community. And that's why rather than trying to
impose what we think the best thing is, we want to see how this Fig app store flourishes and see

what people really want, and then build that into this new terminal that we start building.
Whether that’s six months from now, a year from now, tomorrow. We don’t know the exact

answer, but we just want to be iterating quickly and probably like launching this, getting people
using it, getting their feedback and iterating.

[00:30:27] JM: What would be hard about building your own terminal?

[00:30:31] MS: It’s sort of similar to building your own browser in a lot of ways, because there's

a lot of backwards compatibility that you need to be aware of. You don't want to break anyone's
existing workflows. So there're a lot of just edge cases that maybe only 1% of developers end

up needing. But you don't want to annoy people. You don't want to take something away from
people when they think they're upgrading. And so that's I think probably one of the biggest

challenges, is finding ways of blending this old technology with some of the new approaches to
affordances and accessibility.

[00:31:04] BF: Another thing I would certainly say is speed. That one of the big reasons people

use the terminal is you don't have to go – AWS, example again, you don't have to go to the AWS
console and click all these buttons and that’s really, really slow. When if you just know the exact

© 2020 Software Engineering Daily �15

SED 1153 Transcript

sequence of characters, you can perform that workflow in 10 seconds, 5 seconds, however long

it takes you to type it out.

And so making sure that everything we do is super, super fast and there is no – We spoke to a
ton of developers as we built Fig out. And they say I can notice if there's a 50 millisecond lag in

anything in the terminal. There is a reason why people don't use – Not don't use tools. We’re not
say anything bad about it all. But hyper – Just takes a little bit longer to set up, to load up when

you open it up for the first time. When you’re used to opening up the terminal and it’s instant and
you type things in and there’s no lag, whatsoever. Even anything that’s 50 milliseconds more is

weirdly noticeable. Not weirdly. It’s understandably noticeable. And so we got to make sure that
it is super, super fast, as fast as before. You can do everything that you can do before in the

same way, and you can do way more is the goal.

[00:32:19] JM: The last time a new terminal was built – I know there are these different
terminals. There’s like Z-shell, and Bash and there are things that I never paid much attention to

why there are different terminals. How have they diverged in the past?

[00:32:33] MS: So there are two things there. There's kind of new terminal. So like Hyper,
Alacrity, Kitty. I mean, these are terminal emulators. So they’re basically giving you the same

experience that you would've had when you were typing at the teletype 70 years ago. But some
of these newer ones are rendered by a GPU or rendered with web technology. So it’s kind of

giving a new interface for this old tool.

And then there are shells. So that's like Bash, you have Z-shell, you have Fish, you have a new
shell called Oil that is interesting that hits Hacker News some of the time. And for a longtime,

these have been sort parallel efforts. So you have the terminals, which kind of are the browsers
here. They provide sort of the base functionality, but they don't do a ton of smart stuff. They

leave the smart stuff to the shells or to whatever is happening inside the terminal process.

And the shells will do smart things like auto complete or kind of giving you suggestions. But we
think that there's a cool possibility of combining the two of having a shell that can present stuff in

a UI and basically breaking down this delineation between the shell and the terminal and
creating an integrated experience that feels smoother and feels more modern.

© 2020 Software Engineering Daily �16

SED 1153 Transcript

[00:33:46] JM: How is the auto complete feature built?

[00:33:50] BF: So a lot of moving parts. The first part is we – It’s all local. I will say that first-off
that we know there stories of things hitting servers, and the last thing you want to do is send any

confidential or private information to any server. We’re always upfront about all of our privacies
up. So everything to do with auto complete is local.

The first thing you do is you download a completion spec. A completion spec is literally, “Okay,

Git has this number of sub-commands, and then this number of sub-sub-command, this number
of flags,” whatever it is. And it’s really just a big JSON object that you downloaded into a specific

folder and we have a Fig command that lest you sort of Fig installed, Git Fig install, whatever
that the completion spec name is. And all of these is open source and built by the community it

in our public GitHub repo.

So you download it, and then what happens is you’re typing something in. We are parsing what
you're typing in. So if you are – I don’t know. You have some expansion. You have used a

semicolon, the start of a new command. You have used an and operator, like all of that stuff. We
need to sort of workout what is the command sequence that you typing at any given time. Then

we need to sort of work out, “All right. Are you typing in –” Of that, are you now typing in the
arguments to an option? Are you typing in subcommand? Sort of building this in the same way

VS code has built it. And so predicting what are the possible things that you can type. And then
using the completion spec that you've downloaded to build those completions out.

And so we can do completions for things like Heroku is an example here. I want to add a new

add-on to my Heroku app. When you do the -a flag or --app and you select which app you want
to do, usually you would have to either know the app’s name exactly or you’d have to run a

previous command to work out the exact name or you’d end up going to the browser to work out
the name. Whereas we can actually auto complete the 3, or 4, or 10 app names you have. And

then you start typing them in. And this is all local. We’re just sort of running the Heroku apps,
JSON commands to work out what the apps are.

So under the hood, the quick summary is we are parsing your command. We are then mapping

© 2020 Software Engineering Daily �17

SED 1153 Transcript

the parsing of it to the completion spec, and then giving you suggestions based on what the

completion spec has said.

[00:36:09] JM: What parts of fig have we not explored?

[00:36:12] BF: So one of the things we built pretty early on was building your own CLI tool for
either yourself and for your team. So teams would have a CLI, but a big problem was they

wouldn’t know – A couple of problems. One was building the CLI. There’s usually sort of key
man risk. There’s one person who’s built it. And it’s hard to update. Things go stale. It’s sort of

this black box, and there is usually one person. If they leave the company, someone has to
learn how to do it. It’s not really – You can't contribute to it together. Sometimes you can, but it's

not as nice as having a shared notion document or something like that.

And so we wanted to make it easy to sort of collaborate on building this CLI. And then the
second thing was, well, people, the top 10%, 20% of engineers at a company know a big CLI

pretty well. But then the other 80% – And these numbers aren’t exactly fixed, but they may know
how to do a couple of things. But the other commands just aren’t discoverable. So you wouldn't

know what the inputs are or the parameters for anything, the subcommands, all of that. You’d
end up bugging your boss, “How do I do this?” How do I do that?” And that sort of defeats the

purpose of a CLI if it's meant to make you faster and it ends up adding two or three more
problems.

So what we wanted to do was make it way more discoverable and much easier to collaborate.

And so we have a cool tool, Fig build, and you can build your entire CLI just visually. We have a
nice little nested hierarchy on the left side so you can add new sub commands. And then you

can just define which scripts you want to run. You could define the input parameters and options
and whatnot to the sort of CLI tool. And you can just build this thing really, really quickly. And

then we’re actually building out the feature where we can host it. So when you make an update,
it's pushed instantly to everyone’s computer, or you can also just have this in your Git repo and

use it amongst your team as soon as everyone does a Git pull.

[00:38:09] JM: It’s a really interesting property, and it makes me think about the fact that when I
was first looking at Fig, it’s like, “Oh, this is entirely client-side application.” But there are some

© 2020 Software Engineering Daily �18

SED 1153 Transcript

benefits to the network, like kind of over the wire updates and stuff, obviously. Can you tell me a

little bit more about what aspects of Fig are not inclusively client-side?

[00:38:32] MS: Yeah. So we definitely were thinking about this upfront, because anytime you're
giving an app access to you shell, like that's a lot of power potentially. And so security and

what's going over the wire and what’s local was top of mind for us. So all the runbooks can be
hosted locally, or you can share them in the clouds, but definitely if you have a local version, like

that’s run first. You can install fig apps locally so that it doesn't hit the cloud. Or when you’re kind
of just discovering apps, that's basically the time when it might go download something from a

remote server as if you are on the app store and you find an app that you want, then you
haven’t installed it already, it will prompt you with the set of permissions and what command this

app is enabled to run on your behalf. So before you have remote code running on the machine,
we make sure to give you the chance to that and opt in o opt out.

[00:39:27] JM: The terminal is something about the developer experience that you guys have

reimagined. Are there any other elements of the developer experience that you think should be
reimagined?

[00:39:38] MS: I think like a lot of the pain points in the terminal have to do with deployment.

Have to do with dependencies. Like this is why there needs to be a reimagining, it's because
like the processes and the workflows in the terminal are the things that are hard and not

necessarily the most discoverable. And so we think that having abstractions over some of these
lower-level things will be useful and make the terminal more accessible. But in general, I think

that for things like deployment, Heroku abstracts over a bunch of AWS commands and
infrastructure expertise that you need in order to set up a similar thing. And so we’d like to kind

of apply that model to the terminals well and potentially even kind of build out our own sort of
abstractions in a similar way.

[00:40:23] BF: I think there are always things that you can improve with the developer

experience. It’s just things always getting faster. Three are always going to be new ways of
doing things. And so things need to be simpler. The more we do this, the more we notice

problems in other areas. And I think the cool thing with the terminal is it is this – The root of all of
these problems, you can start with the terminal and you can have an easier way to do things

© 2020 Software Engineering Daily �19

SED 1153 Transcript

from the terminal because it connects to – Does web requests. It does cloud. All of these stuff

can start at the terminal, which is why we like it as the space.

[00:41:00] JM: Okay, guys. Well, that sounds like good place to stop. Thanks for coming on the
show.

[00:41:04] BF: Thanks so much for having us.

[END]

© 2020 Software Engineering Daily �20

