
SED 1146 Transcript

EPISODE 1146

[INTRODUCTION]

[00:00:00] JM: Containers and virtual machines are two ways of running virtualized

infrastructure. Containers use less resources than VMs, and typically use the Run C open
source container runtime. Syxbox is a containerization runtime that allows an alternative to Run

C and allows for the deployment of Docker or Kubernetes within a container.

Cesar Talledo is the founder of Nestybox, a company built around the Sysbox runtime. He joins
the show to talk about container runtimes and his new company.

[INTERVIEW]

[00:00:37] JM: Brad, welcome to the show.

[00:00:38] B: Thanks for having me.

[00:00:40] JM: You work on Roboflow, and one way to look at Roboflow is as extract transform

load, or ETL fork computer vision. So, many people have heard previous episodes about extract
transform load. They know that pattern. Explain how that applies to Roboflow.

[00:00:57] B: Yeah. So when we got started with Roboflow, it was because we are building our

own augmented reality applications that were powered by computer vision. And we felt this
really big frustration around kind of that ETL layer of things, where it seemed like there were

purpose built tools for doing things like labeling your images and training your models. But there
is this like peace in between, in between labeling and training where everybody basically just

has to build their own one-off Python scripts to do all these like menial tasks that aren’t really
important to the problem.

And so when we’re asking around all of our friends like, “Hey, how do you all do this?” It seemed

like everybody was just like reinventing the wheel. And so we figured since we were going to
have to write these tools internally for ourselves for our own app, we should release those out to

	 © 2020 Software Engineering Daily	 �1

SED 1146 Transcript

the world. I mean, actually, now we’ve pivoted the company to be completely developer tools

focused primarily on that niche right in between labeling your images and training your model.

[00:01:48] JM: Okay. And so explain what a prototypical workflow would look like for Roboflow.

[00:01:53] B: Yup. So we’re like universal conversion tool. You can imagine us as kind of like an
open platform that plays nicely with all sorts of other point solutions. So we're pretty agnostic

about where you do your labeling and training. We can accept over 34 different annotation
formats ranging from like outsourced labeling tools like Scale or Amazon SageMaker. Or if you

want to label them yourself, we support all of the major labeling tools. So you label your images
and then you get these annotation files out of them. And one of the biggest pain points that

you'll feel is that when you export your data from all these tools, they come in format specific to
the tool, which are not like compatible with any of the models that you’re going to want to use.

And so kind of one of our hooks is we can import all those tools and then output to all these
other different formats. So that's one of the ways that people find us, is they're looking to

convert VOC XML to TF records for TensorFlow.

And so the way that it works is you come into Roboflow, you drop in your images and
annotations and we perform a bunch of checks up on them. Help you make sure that that data

looks good and is ready to go for model training. We’ll help you augment your images,
preprocess them. Do all those sorts of things that you would kind of have to do one-off Python

scripts for and then we’ll export them and then you’re ready to train your model.

[00:03:09] JM: And how does this save time?

[00:03:11] B: Yeah. So most of our customers are looking at this as kind of a tradeoff between
doing it themselves by writing all those Python scripts or using something like Roboflow. So we

talked to one of our early customers and asked them like, “Hey, how much time are you actually
saving by doing this?” And they told us that it had been on their backlog to try out a Pytorch

torch model. They were a TensorFlow shop for quite a while but had never like gotten to the top
of their stack, because it just seem like such a pain to switch all their image processing

pipelines, convert all their annotation formats and all that stuff. And so they estimated that that
would've taken a week of development time for their team of three. But with Roboflow, then they

	 © 2020 Software Engineering Daily	 �2

SED 1146 Transcript

were able to do it with a single engineer over the course of an afternoon and they had a Pytorch

model trained and actually found that it worked better than their TensorFlow stack that they'd
been using for quite some time.

[00:03:57] JM: Can you explain what annotation formats are? Why are there multiple

annotation formats?

[00:04:03] B: Yeah. So and annotation format describes where the examples are in your
images. So when you train a machine learning model, you’re kind of training it by example

you're showing at like, “Hey, here's the thing that I'm looking for. Try and figure out how to
replicate these inputs that that give you.” And so an annotation format is just a way of encoding

that. It could be XML. It could be JSON. It could be a binary format like TF record, or a text file,
or any number of other different formats. And it seems like the reason that there is so many

different formats is that everybody just kind of invents their own thing internally and then
releases their stuff as open source. And so they don't play nicely together. So you have all these

researchers that are publishing papers and they’re not thinking about like, “Oh, how are people
going to use this to actually deploy stuff into the wild? They’re thinking about how do I get state-

of-the-art results and release something? So it’s all these kind of like hacky like academic code
rather than production code. And then people take those research papers and they’re trying to

convert them into production, and they end up like having to use basically whatever default
format the researcher had in their paper to reproduce that. And so you end up with this just kind

of spaghetti-ness of all these file formats that don't play nicely together.

[00:05:12] JM: Do you have a prototypical example of a company that's using Roboflow

[00:05:17] B: Yeah. So it spans the gamut. Everything from hobbyists that are building like
raccoon detectors to train little robots to chase them out of their backyard, to some of the world's

largest companies. So we have a Fortune 500 oil and gas company that using Roboflow to train
models within their security camera footage to look for oil leaks in their pipeline. So previously,

this was something, these are like unmanned 10,000 miles of pipeline and they have like these
little leaks that turn into big problems and they don't like get addressed until a human notices

them. So they’re training models to automatically look at their security camera footage vision
real-time and alert them so that they can fix the tiny leaks before they become big problems.

	 © 2020 Software Engineering Daily	 �3

SED 1146 Transcript

[00:05:57] JM: Let’s go through a little bit more on the raccoon example. So let's say I'm
training a model to recognize raccoons and chase them out of my backyard with maybe some

served drone or like a Roomba like robot. What would be my workflow with and without
Roboflow?

[00:06:14] B: Yeah. The raccoon detector is a funny example, because we actually have six

distinct users all working on detecting raccoons. And so one of them is trying to automatically
turn on their garden hose to spray the raccoons. One of them has this little spider robot that he

is trying to train to like chase them. So it’s been kind of a surprising niche that we’ve found.

So kind of that the workflow would be most these guys are using like nest cameras to export a
bunch of images from your nest camera. Find some of the ones that have raccoons and some

of the ones that don't. So like one guy is trying to make sure that his robot doesn't also chase
his dog. So he wants to label his dog. He wants to label the raccoon. And then he'll end up

training a model to do that in real time. So without Roboflow, he'd be writing all these Python
scripts to like after he labels his stuff to convert them, to augment the images so that it works

well in the daytime and nighttime, whether it's a cloudy or not, if the camera happens to be at a
slightly different angle, if the wind has blown stuff around. And so instead of collecting millions of

different images, he’ll do something called data augmentation, which it just like helps your
model generalize more by giving it more examples that aren’t all exactly the same. So those are

some examples of things that you’d be writing Python scripts to do and are very specific to like
the input format for one specific model.

With Roboflow, that's all done within the platform. And so you can try a whole bunch of different

experience experiments much more quickly and then export them and you can try maybe
efficient det or Yolo V5 or Yolo V4 on Pytorch, TensorFlow, Darknet, and you can try all those

things over the course of a week rather than having to spend a week each basically.

[00:07:53] JM: What have you had to build in Roboflow? Tell me a little about the infrastructure.

[00:07:59] B: So probably the biggest parts of the app are like our annotation parsing system.
So we support all these different formats importing and exporting from them. So I think when

	 © 2020 Software Engineering Daily	 �4

SED 1146 Transcript

you do all the combinations, it's like 400 or 500 different combinations of X to Y formats. And

previously if you like Google like converting Pascal VOC to COCO JSON, there's like a specific
Python script that you can find on GitHub to do that one specific thing. And so we spent a

considerable amount of time basically abstracting that so that it's really easy for us to provide
this kind of abstraction layer over the top of all these different formats.

And then we have a pretty robust image transformation pipeline that spins up servers to do

things like rotating images and adjusting their brightness and contrast, resizing them and getting
them ready for training. And then we also have another pipeline that takes all of those

transformed images and compiles them together into one output format. So that might be a TF
record binary format for TensorFlow, or it might be like a zip file containing all your XML and

JPEG images for another format.

[00:09:04] JM: Tell me about some of the particularly hard technical problems you had to solve
in building Roboflow.

[00:09:09] B: Yeah. So some of things that were surprising to us, I guess not surprising, but we

didn't think that we’d have to address them so quickly, was the sheer scale of things. So we
started out by using cloud functions to do a lot of these tasks. What we quickly learned was that

cloud functions have some technical limitations in terms of like the amount of time that they can
run and the amount of memory that they can use. So you can imagine if you’re creating a

dataset with a thousand images, that might work fine. But then all of a sudden somebody
uploads 250,000 images and all the sudden like that just breaks. And so we had a kind of

replicate and abstract away from that. And so we internally have basically our own version of
Google Cloud functions or AWS Lambda that runs on Docker containers now instead so that we

can create images of arbitrary size. We can add GPs to those that do some things that you're
not able to do with the native serverless cloud functions.

[00:10:04] JM: Sorry. So what were the problems with the cloud functions?

[00:10:07] B: Yeah. So I think on AWS and Google, it’s 2 GB and 3 GB is the maximum amount

of memory and disk space you can use on those. So you can imagine, like if you're trying to
create a zip file that's a hundred gigabytes, it's really a tough technical challenge to do that on

	 © 2020 Software Engineering Daily	 �5

SED 1146 Transcript

an instance that can have maximum of 2 GB of memory and disk space storage. And they’re

also limited to only running for a certain amount of time. So I think on Google that's nine
minutes. So if you're trying to download 250,000 images and process them all on one cloud

function and output one file, if it takes longer than nine minutes, you're just kind of out of luck.
And so by building our own version of those sorts of tools, we can eliminate some of those kind

of hard barriers that you're not allowed to overcome on serverless cloud functions.

[00:10:56] JM: So if you’re trying to be this sort of middleware stitching together all these
different frameworks and toolsets, it seems like there's probably some issues in being that glue

between them. Are there any particularly difficult problems that you’ve had to solve in gluing
together these different frameworks?

[00:11:17] B: I don't think there’s necessarily like big technical challenges there. I think there is

like philosophical things that we've had to overcome. So you can imagine some of the big cloud
providers are also trying to be this like end-to-end machine learning platform. And if you look at

AWS’s like incentives on their platform, they really want to lock you into using the AWS labeling
tool, and the AWS notebooks, and the AWS training, and the AWS deployment stuff. And what

we found is that doesn't really work well for a lot of teams. There are all these good point
solutions out there that aren’t built by AWS, and like that kind of end-to-end platform where like

you either take the whole thing or none of it at all just doesn't work for folks.

And so I think one of our like core observations is that if we can help people use the best point
solutions for each step of the pipeline, that can be really powerful. And is one of the reasons that

people choose us is that we’re like interoperable with all these other tools. We don't have to like
control your training flow. We don't have to control your labeling. We can just play nicely with

everything and help you use those altogether and be kind of the tool that just reduces friction
between all these other parts of the pipeline.

[00:12:28] JM: Do you find that people pick a particular cloud provider and just go all-in on it

like on AWS? Or they go all-in one the Google TensorFlow stack? Or do you find the people
really want heterogeneity?

[00:12:42] B: Yeah. It really depends. We have a couple of different like customer types. And

	 © 2020 Software Engineering Daily	 �6

SED 1146 Transcript

certainly there are like really advanced companies that have built out a team of PhD's that are

working on computer vision. And those kind of more mature teams definitely have their workflow
that they prefer. But there're also these other teams that we find that are kind of just getting

started. We think one of our like core, like mission statements, is that we want to make
computer vision something that all software developers can use. You shouldn't have to hire a

team of PhD's and be a company the size of Google to use it. And so by letting these teams
experiment more quickly with their existing engineering resources, you let them come to find

what works best for their problem.

And so when you're first like exploring a problem space, you don't know like whether
TensorFlow or PyTorch is going to be the right solution for your problem. You probably want try

them both. And so we help you like navigate that kind of problem space really efficiently and
quickly and find what's going to work best for you. And yeah, we have seen teams like switch

from TensorFlow to PyTorch, but usually it's in the course of experimentation. Machine learning
is one of those things where like it's never done. You’re always iterating and trying to find

something that works a little bit better. And so if a new model comes out and it is has research
results that work better but the code is in PyTorch and you’re in TensorFlow, you don't want to

be stuck in your legacy platform if there's something that's going to work better. And so helping
them experiments and use whatever tool is best at a given moment in time I think has been

really valuable.

[00:14:07] JM: Tell me more about what you need to do to integrate with the labeling providers.

[00:14:12] B: Yeah. So it's actually been interesting. We assumed that most people who are
doing computer vision and production, we’re going to be outsourcing their labeling to tools like

scale or AWS SageMaker ground truth. But what we found is even a lot of big companies are
still kind of in this experimentation phase where they’re just doing things in-house. And so

they’re having these highly paid, highly skilled engineers that are labeling bounding boxes on
their images just because like It's kind of big like problem and pain point for them to go out and

source of provider. And a lot of these providers have like big minimums that they have to spend.
And there's like a procurement process.

And so we feel like if we can like reduce the amount of friction to that and free up the time of

	 © 2020 Software Engineering Daily	 �7

SED 1146 Transcript

developers to be working on the things that actually need their unique skillset, that can be really

powerful. So right now we integrate with basically all of the self-serve labeling tools. So whether
they've used CVAT or VoTT or another like tool to label the images themselves, they can import

those all directly into Roboflow. But we also have helped many teams outsource their labeling
for the first. And so there's a bunch of different providers. They all have their own pros and cons

and we feel like we can help match those users with the labeling provider that’s going to be right
for their use case that can provide a lot of value to them as well.

[00:15:30] JM: And what about the model training tools? What are the integration with the

model training tools like?

[00:15:37] B: Yeah. So we have a model library that has co-lab notebooks that are set up to do
most of the like modern, state-of-the-art object detection models. So you kind of pick those up

and play around with those. We also have integrations with all three major cloud providers,
AutoML tools. So you can try Google’s, you can try Microsoft’s, and you can try Amazon's and

kind of get a baseline for what is the like naïve level of performance that you'd get just kind of
off-the-shelf. And that something that's hard to do right now. You’d have to integrate with each of

their individual APIs to try them out. But with Roboflow, you can just try all three and see how it
works.

One thing that we’ve found is that a lot of these software developers that aren't machine

learning experts that are using computer vision via Roboflow, they go to our model library and
they have these like Jupyter Notebooks, and all they're doing is hitting enter-enter-enter-enter.

They're not really like doing anything custom. And they end up with this weights file that they
don't know what to do with them. So when they want to deploy it and use it in their application,

they’re then trying to like figure out how do I spin up servers and host this and like build DevOps
infrastructure around that?

And so one of the places we’re moving into is providing our own sort of hosted training and

deployment environment for some those users who just want to use computer vision, get
something that works well enough, built it into their application and not really worry about all the

details of tuning their model and whatnot. And so as we have talked to users, we've found out
that while we’re solving a bunch these problems and eliminating like the boilerplate Python code

	 © 2020 Software Engineering Daily	 �8

SED 1146 Transcript

that they have to write, by getting them over that hump, they then hit these other problems like,

“Oh crap! Now I have this trained model. What do I actually do with that?” And so we’re really
trying to make that easy for them to integrate computer vision to their apps and focus

exclusively on the things that are unique to their app and not the things that are kind of this
boilerplate computer vision infrastructure that's reinventing the wheel of things that's already out

there and not providing unique value to their domain-specific problems.

[00:17:39] JM: On your website, you have some areas where people can share datasets and
seems kind of random compared to your other tools. What's the objective with these datasets,

the shared datasets you have on your website?

[00:17:54] B: Yeah. So we feel like beyond providing the tools, if we want to enable any
developer to use computer vision, we need to kind of like chop down those barriers that make it

hard. And one of the things that we found is that a lot of developers, they have like a problem
that they have like this inkling of an idea that they could use computer vision for. But they don't

have like a dataset that they've already gone out and collected. And so they just like this hump
where they don't have something to try it out on. And so we figured one way that we could get

them over that hump was to provide a whole bunch of datasets that they could use to play
around and try things out.

And so we curated and released a bunch of open source dataset. Some of which we collected.

Some are from our users that were willing to share those with other researchers and some that
were already open-source that we either improved or converted. And so that's kind of like one of

those humps that like if you don't have a data, it's really hard to get started learning computer
vision. And kind of along those lines, we feel like education and like teaching people how to use

computer vision is another big stumbling block. If you're such software developer, computer
vision can be one of these things where it feels inaccessible and like something where you'd

have to go back to school to use it. And in fact, I was a software developer before with no
computer vision or machine learning expertise, and at one time it seems like an insurmountable

hurdle to me too. And so we feel like educating people and like putting out tutorials and making
sure that we’re like doing everything that we can to democratize this technology and make it

accessible and a part of every developer’s tool chest is something that we should play a part in.
And so we have tutorials, we have YouTube videos. We have those public datasets. We have

	 © 2020 Software Engineering Daily	 �9

SED 1146 Transcript

those open source models, and we’re really trying to do everything we can to make that hurdle

to getting computer vision into your app as low as possible.

[00:19:42] JM: And what are the main hurdles to getting computer vision into my application
today? Let’s say I’m building like a to-do-list app. I'm a brand-new developer. I’m building a to-

do-list app and I want to have computer vision in my application because I want to – I don't
know, take a picture of a blanket and have it recognize that it's a blanket so it can tell me to fold

the blanket and put a to-do on my list for folding a blanket. Why is that hard today?

[00:20:15] B: Yeah. So one of the biggest hurdles actually is for software developers to even
realize that this is something that they can do. I mean, for the first 50 years of computing,

teaching a computer to understand image data was like an intractable problem. It was just
something that even with a team of PhDs you can do. And it's really only been in the past

decade that this has become accessible to not only teams of PhD's, but just a single solo
software developer off the street.

And so one of the biggest challenges is just convincing people that it is possible and that it is

something that they can do. Once you get them over that hump, a lot of the other stuff is just
normal software engineering stuff of getting a Python script up and running and following a

tutorial and getting through things. And then I think the last challenge is on the deployment side.
It gets kind of complicated when you're looking to actually like deploy it into the wild, because

whether you're deploying it on a server or on a mobile phone or an embedded device
somewhere else, you almost have to start from the end and think about like, “Where am I going

to put this?” And then that informs a lot of the decisions beforehand. And so it's kind of like this
like forwards pass of I need to figure out that I can do this. And then a backwards pass of,

“Okay, so I think this is tractable. Now, I want to do this for real. If I want to put this on a
Raspberry Pi, what considerations and decisions do I need to make before that to make sure

that the model that I come out with is deployable there?” And so, yeah, I think it's kind of like an
iteration process of getting over the hump of like training your first model and then creating your

first project that you can use in the wild.

[00:21:55] JM: Let's take it from the top again. Let's say I have a bunch of images of a
chessboard and each image has like a configuration of a board situation and I want to generate

	 © 2020 Software Engineering Daily	 �10

SED 1146 Transcript

like solutions to use to those chess problems. What would be my process for using Roboflow do

that?

[00:22:20] B: Yeah. So actually this is a great example. My cofounder and I actually built a
computer vision powered chess solver for a hackathon Techcrunch Disrupt last fall. So maybe it

would make sense for me to walk you through how we did that. So we came into this hackathon
with basically nothing. We had a chessboard. We had an iPhone. We had our laptops and that

was it. And so the first step was setting up the chessboard and setting up a bunch of positions,
taking pictures of those with our iPhone. And then you offload those pictures from your phone.

And now you have the unlabeled images. So you need to label those images.

We brought those into a tool on the Mac called RectLabel, which creates indentations in a VOC
XML format. So you go through, you draw a box around each individual piece. You tell it this is a

white queen. This is a black queen. This is a pawn. And then you have this kind of serialized
format of what is the state of the chessboard. And then from there, at the hackathon, because

we didn't have Roboflow yet, we run a bunch of Python scripts to like modify that, resize the
things, create some augmentation so that it would work depending on different lighting. With

Roboflow, you would just drop those images and annotations into our software and you get a gui
where you could play around with all those different settings.

At the hackathon, we then train the model. We used Apple's tool called CreateML, which is a no-

code training platform. With Roboflow, you could still do that. You just click, “Hey, I want these
annotations and create ML format.” Hit go. You get a zip file. You drop those into the app and hit

train. You could also with Roboflow say, “Hey, I want to train these on AWS with their recognition
custom labels.” Or I want to use Roboflow Train, which is our competitor to that. You click a

button, you get a model.

So for us, training the model at the hackathon was something that we did overnight the first
night. So while that was going on, we are working on scaffolding out the app that was going to

consume this model. And so it was taking images from the iPhone camera. It was going to feed
them through this black box model and get back JSON results essentially of like is it looking at a

chessboard? Where are the pieces? And then you have basically a traditional problem to solve,
right? You have the location of these pieces that you have serialized to like say, “Okay, so this

	 © 2020 Software Engineering Daily	 �11

SED 1146 Transcript

X-Y position represents this position on the board.” And once you have that, then you can feed it

to like a chess solver app. I think the one that we were using – I can't remember it. I think it was
Stock Fish at the hackathon. And so basically like you’re treating that computer vision as a black

box that like converts your image into like usable computer data. And so it’s like these two
concurrent processes of developing the app and then developing the model that then end up

working in tandem.

[00:24:59] JM: The different phases of using Roboflow; analyze, preprocess, augment, convert,
export and share. Could you go through each of these in a little more detail?

[00:25:12] B: Sure. Yeah conversion, I think we we've touched on. There're all those different

formats. And so we’re like the universal conversion tool where you can import in one format and
export in another. And one of the ways that we like to think about that is if you are an author and

you were spending a bunch of your time converting like .doc to .pdf as part of your process, that
would be ridiculous. And that's kind of how we think about engineers and machine learning

people spending a bunch of time converting formats and writing python scripts to do that. It’s
just kind of a ridiculous thing that you would have to spend any time writing file conversion

formats in 2020. And so that's kind of the piece of the process that we handle with the
conversion side.

On the analyze side, so we have these tools that once you upload your annotations into

Roboflow, we can perform checks and like tell you, “Oh, hey. This was a malformed indentation
that's going to cause problems with your training script.” We automatically fix a bunch of those

and we bring to your attention other potential problems. So as examples of that, some things
that you run into you when you're training a machine learning model are like class and balance.

So let’s say you have your chessboard images and it turns out there is 16 pawns on the board
for every one queen. You’re going to end up with your model overweighting and seeing way

more pawns than it sees queens. And so you'd probably want to rebalance those things so that
your model is not able to cheat by just like guessing pawn, because that's what optimizes its

score, because in like the later game, like there's going to be less pawns and more queens
relatively.

So we help you like identify by like class imbalance. We help you identify things like, Hey, this

	 © 2020 Software Engineering Daily	 �12

SED 1146 Transcript

queen on this chessboard, like in 90% of your images, it was on the exact same portion of the

image. You might want to augment that so that your model doesn't learn, “Oh, the queen is
always on the same white square,” and learn to basically like cheat that way. We can do things

like re-cropping the image or translating that bounding box around or going out and taking more
photos with more examples of the queen on different squares.

Augmentation is what we mentioned earlier of making sure that your model generalizes. So

doing things like adjusting the brightness and contrast, rotating it, cropping it. There are some
advanced augmentations that you can use. One of which is called mosaic, where it will take

multiple different images from your training set and it will combine them all together to create
like an image that has four pieces of other images. And the purpose of augmentation is really to

help your model generalize. If you feed it the same image over and over again, it just learns to
memorize that particular iteration of your problem. And so by augmenting your images and

feeding it a slightly different variation every time it sees an image, you get better results on
images that it's never seen before.

And then on the training side, I mentioned we have all those export formats that go to

TensorFlow, PyTorch, the cloud AutoML tools or our training, one-click training platform. And
we’re adding support for more and more as time goes on. Our hope is to basically be that

connector that connects every labeling tool with every training tool. And so when customers
come to us and they’re like, “Hey, I have this like random annotation format from a Chinese

paper that was published in 2012. Do you support that?” The answer is always yes. And we just
spend an hour adding support for that before they get on-boarded. And our hope is to support

every single format and every single training platform.

And then on the share side, this is one of the big pain points that we felt when we were building
our own apps, is that it feels like the olden days like before Dropbox where you would be like

emailing around like these version 2.final.reallyfinal, and you have like multiple people working
on these datasets. And let's say it in the olden days before Roboflow, I took 20 chess images. I

emailed a link on Dropbox to my cofounder. He combined that with his 20 images that he took.
Then he found a problem with one of my images and he updated it. Well, now you have like

three different versions of the dataset and it’s like not entirely clear which one you should use or
how you should be working together on that. And so Roboflow is like the single source of truth

	 © 2020 Software Engineering Daily	 �13

SED 1146 Transcript

for your datasets by combining them in this platform that’s like a multiuser sort of thing. You can

religious keep track of who's done what. What are the different versions? Who trained which
models on which versions? And make sure that you’re like staying in sync rather than having a

bunch of different versions floating around out there that like some of them are cropped and
some of them are resized. You really just want like your original files and then transform for your

models in a non-destructive manner so you can experiment without like getting completely lost
in all the data.

[00:29:49] JM: And again, the process of preparing datasets for training. Let's go a little bit

deeper into that. So the different things that Roboflow is going to do is assess annotation
quality, fix unbalanced classes, de-duplicate images, visualize model inputs and version control

datasets. And then you can share them with your teammates. Tell me more about the
preparation for dataset training.

[00:30:14] B: Yeah. So as I mentioned, like not only are all the labeling tools using different

formats, but the training tools are all using different formats as well. And most of the time they
don't match up with any of the labeling tools. So for TensorFlow, you have to create what's

called a TF record, which is like a binary format that has all of your images and all of your
annotations compiled into one file that it's going to load at training time to go through and create

a data loader and like iterate through all of your different images. That’s something that
traditionally you'd have to write your own Python script to take all of your images from disk, pair

them with your annotations, encode them in the specific format and then output this TF record
file that’s going to go through TensorFlow to do training.

And so like you can imagine, that’s something that there are countless stack overflow questions

about like how do I convert this format into a TF record for training with the TensorFlow object
detection API. And so with Roboflow, it's just a click of a button. When you click export, you get

a drop-down list, and one of the options is create a TF record, and then it will compile those
altogether and it will either let you download that zip file to your computer or give you a link to

that, host it in the cloud so that when you spin up your cloud server or boot up your co-lab
notebook you just drop in that one line of code and it will downloaded it from the cloud, unzip it,

and it will be ready for training with your model.

	 © 2020 Software Engineering Daily	 �14

SED 1146 Transcript

[00:31:38] JM: What problems do you think machine learning is uniquely positioned to solve in

the next year, or 5 years, or 20 years?

[00:31:46] B: Yeah. So that's actually pretty interesting. I think one of the like opinionated
stances that we take is that computer vision is actually its own unique beast. It’s certainly a part

of machine learning. But we think that the tooling and solutions that are needed for computer
vision are actually much different than the ones that are used for, say, natural language

processing. And so I think like when you think about like what is machine learning going to do,
it’s such a broad answer. And I think like focusing in on what is computer vision going to do is

probably the part that I'm most suited to answer. And I think – like if I think in 20 to 30 years
down the road, I think that the state that we’re in right now with computer vision is similar to like

maybe how the web was in the 90s where certainly there were like e-commerce websites in the
90s, right? But in order to build them, you had to you like invent your own database and create

your own web server. And if you wanted to like accept payments, you had to like be an expert in
cryptography to be able to do that. And I think as we go forward, all those things are going to be

like abstracted and made into tools that basically any software developer off the street can pick
up and use.

And so we think that that's kind of our mission. And when you do that, you enable all of these

new use cases. And so if you think about like what computer vision has done to the car industry
with self-driving cars, it’s just like this massive transformation that not only changes how cars

operate, but also like how cities are going to be organized. And our kind of core hypothesis is
that computer vision isn't just about self-driving cars. It's kind of like the pc or the internet where

it’s going to touch every industry and transform every industry.

And so if you look at kind of some of the use cases that are coming down the pipeline, I
mentioned detecting oil leaks, but that's just the start. We have a student that is working on

detecting wildfires from computer vision. So you can imagine having these like security cameras
on top of weather stations that are looking for smoke. And he wants to deploy a drone at the first

sign of smoke to like douse the fire before it gets out of control. Or we have like these other
students that are doing human rights monitoring. So there’s this tribe in Africa called the Maasai

people that the government is burning their villages, and he wanted to track like their migration.
And so he's using satellite imagery with computer vision to find where the campsites were,

	 © 2020 Software Engineering Daily	 �15

SED 1146 Transcript

where they are now, and kind of track how this tribe is being displaced.

And we have like companies that are building their entire company on top of Roboflow with

computer vision. One of those was a Y Combinator company that is building a pill counting app.
And they’re replacing this old $15,000 machine with something that runs on commodity

hardware. And so it's going to basically like make this accessible to all these small pharmacies
and just like make their job so much easier.

And so I think like when you when you think into future, it's like every app or company is going

to be able to use computer vision without it having to be a core competency and without having
to hire a bunch of PHDs. And that's really exciting. It's like a future that I want to live in. And like

if I could take a time machine and like travel to the future and see how amazing things are going
be once developers have access to all this technology, it's totally something that I’d be intrigued

by an interested in doing.

[00:34:58] JM: As a company goes from a test model to a production level model, what are the
considerations they must take regarding datasets and dataset pipelines?

[00:35:09] B: Yeah. I mean, I think one of the biggest kind of paradigm shifts for developers

getting into machine learning and computer vision for the first time is that it's not like a binary
sort of thing. It's not like your machine learning model works or it doesn't. There's like these

gradients of how well it works. And so, like traditionally, in software like you can just write a test
and be like, “Yes, my code works. It does exactly what it's supposed to do. But with machine

learning, it's not entirely clear like when you're done. And in fact you may never be done.

And so it's like there’s this iteration cycle where you want to get something that works well
enough for your first version, deploy that and then find all of the kind of edge cases where it's

failing, and then pull that information back from your production model that like the things that
it's not confident about or that a user reports are incorrect and then pull it back into the

beginning of the flow and put that back into your dataset to make it more complete. You train
another model and you go through this iteration process where you deploy it and then you see,

“Okay. Well, what's it still messing up?” Bring that back. And like, over time, your model gets
better and better. But you really have to close the loop.

	 © 2020 Software Engineering Daily	 �16

SED 1146 Transcript

And so I think like the workflow and the cycle is such that you need to like figure out what is my
MVP? And like make sure that you're picking a problem where like you can actually deploy like

a first version of the model and it's not going to cause like a car to run people over. Such that
you can then figure out what are the edge cases and go back and keep iterating and making

that model better and better every time. I think that for a lot of software developers, that's kind of
a new paradigm where like you’re shipping something out there that you know is only going to

work 80% of the time and then thinking about how you design your software around that
knowing that 20% of the time it's not going to work well. And I think that that's not only a

software problem, but also like a design problem and a business problem and a strategy
problem that needs to be solved. And it’s kind of a new frontier for folks. And it's been interesting

to kind of discuss that with people and have this skepticism about like what you mean my
software is not going to be rock solid and work 100% of the time? It's just like, “What’s a

probabilistic thing?” There are definitely use cases where having it be right 80% of the time is
better than not trying at all. And so, yeah, it's kind of like an exercise in defining the right

problem where you’re going to be successful rather than need something that you’re going to
have to spend a decade on bulletproofing before you release the first version.

[00:37:35] JM: Are there some other common issues in dataset management that you've seen

lead to poor model performance?

[00:37:41] B: Yeah. So there are a few. So one of the most common things that people run into
is trying to detect tiny objects in their images. So you can imagine like let’s say you’re trying to

train something on satellite data and you're trying to detect like people on a beach. Well, the
resolution is such that those people only are a few pixels in your image. And the way that

machine learning models commonly work is they have like an input size. And so even if your
images is, let's say, 20 megapixels, it's going to get shrunk down to like 800 x 800 or 416 x 416.

And those like small number of pixels in the big image end up like becoming one pixel or less in
that shrunk down image. And so this is kind of like one of those things where it's like an

implementation detail that if you're not a machine learning expert, you're just a software
developer that's kind of like following a tutorial, you might not have this mental model for like

what's actually going on behind-the-scenes.

	 © 2020 Software Engineering Daily	 �17

SED 1146 Transcript

And so if you have like small objects inside of your images, it turns out that a lot of times your

model just can't detect those things, because when it gets processed by the model, it gets
shrunk down so far that there's just not any information for it to detect. So that's one thing, is like

detecting. If your objects are small relative to the size of your input images, you have to do
some things to account for that. So one of those might be like tiling your images where instead

of running your model one time on this 20 megapixel image, you shrink it down and cut it into 10
x 10. And now all the sudden you have 100 different images that you run through your model,

but each one, like the relative size of the object compared to the size of the image is bigger. And
so it gives the model more pixels to work with.

[00:39:26] JM: What are the other parts of the machine learning or computer vision process

that could be automated?

[00:39:32] B: I think that the training and deployment is an interesting area where it's not clear
that you actually need a custom model for each problem. There is plenty of models that are very

good off-the-shelf that you can – It's called fine tuning them. So you can like take existing
weights that are trained on a large dataset like COCO, which is one that was released that has

millions of images that represent a whole bunch of different things. And the model can represent
these generic things. You start from that base and then you train it to like learn your individual

objects. So if it’s chess pieces, the COCO dataset doesn't know anything about chess pieces,
but you can start from, “Oh, it knows how to like identify dogs and cats.” And like the features of

dogs and cats and like curves and like changes in patterns and those sorts of things are
applicable also to like isolating chess pieces on top of a chessboard. And it turns out that just by

fine-tuning this model, you can get pretty good results without actually changing the architecture
of the model. It’s just changing the weights.

And so you have this kind of – Like you can think of the model as like this meta-program that

can learn a whole bunch of different domains. And so I think over the last decade, a lot of work
has gone into like optimizing your model architecture. But I think we’re getting to the point where

these models are good enough for a lot of problems where you don't need to do a whole bunch
of like core research on the model architecture. You just need to retrain them on something else.

And once you do that, like you can get to these solutions where it doesn't actually need human
intervention. You can just like run through the same process. Get new weights, and it works

	 © 2020 Software Engineering Daily	 �18

SED 1146 Transcript

pretty well.

And so I think doing that and then deploying it is one area where – Certainly, for some

problems, you're going to need to do some core R and D. But for a lot of problems, you can just
kind of automate that process and get something deployed that works pretty well.

[00:41:30] JM: Any other predictions about the future of computer vision?

[00:41:34] B: I think augmented reality is one that I think people have written off at this point,

because like the early kind of example applications that people have come out with yet so far
have been pretty underwhelming. And I think when you combine augmented reality with

computer vision, it enables you to do really interesting things. And so when you hear Tim Cook
saying that he thinks that AR is going to be like the follow-up to the world's most successful

product in the iPhone, I think people roll their eyes. They’re like, “AR is just this gimmicky thing
that lets you like put Pokémon on the street.”

But, really, when you combine it with computer vision, it allows you to put like a software overlay

over the top with the real world, which I think is really interesting and thinking about like taking
real-world objects and enhancing them with software for the first time without like embedding a

computer in the thing to make it smart. You just make it smart by adding a software layer that
understands what it's looking at and can add features to it is something that is going to take

people by surprise. And so I think I would not write-off AR just because the first version of it was
pretty underwhelming. I think that there's a huge like greenfield of opportunity there.

[00:42:44] JM: Okay. Well, thanks for coming on the show. It’s been great talking to you.

[00:42:47] B: Yeah, likewise. Thanks for having me.

[END]

	 © 2020 Software Engineering Daily	 �19

