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[INTRODUCTION]

[00:00:00] JM: Containers and virtual machines are two ways of running virtualized 

infrastructure. Containers use less resources than VMs, and typically use the Run C open 
source container runtime. Syxbox is a containerization runtime that allows an alternative to Run 

C and allows for the deployment of Docker or Kubernetes within a container. 

Cesar Talledo is the founder of Nestybox, a company built around the Sysbox runtime. He joins 
the show to talk about container runtimes and his new company.

[INTERVIEW] 

[00:00:37] JM: Brad, welcome to the show.

[00:00:38] B: Thanks for having me. 

[00:00:40] JM: You work on Roboflow, and one way to look at Roboflow is as extract transform 

load, or ETL fork computer vision. So, many people have heard previous episodes about extract 
transform load. They know that pattern. Explain how that applies to Roboflow. 

[00:00:57] B: Yeah. So when we got started with Roboflow, it was because we are building our 

own augmented reality applications that were powered by computer vision. And we felt this 
really big frustration around kind of that ETL layer of things, where it seemed like there were 

purpose built tools for doing things like labeling your images and training your models. But there 
is this like peace in between, in between labeling and training where everybody basically just 

has to build their own one-off Python scripts to do all these like menial tasks that aren’t really 
important to the problem. 

And so when we’re asking around all of our friends like, “Hey, how do you all do this?” It seemed 

like everybody was just like reinventing the wheel. And so we figured since we were going to 
have to write these tools internally for ourselves for our own app, we should release those out to 
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the world. I mean, actually, now we’ve pivoted the company to be completely developer tools 

focused primarily on that niche right in between labeling your images and training your model.

[00:01:48] JM: Okay. And so explain what a prototypical workflow would look like for Roboflow.

[00:01:53] B: Yup. So we’re like universal conversion tool. You can imagine us as kind of like an 
open platform that plays nicely with all sorts of other point solutions. So we're pretty agnostic 

about where you do your labeling and training. We can accept over 34 different annotation 
formats ranging from like outsourced labeling tools like Scale or Amazon SageMaker. Or if you 

want to label them yourself, we support all of the major labeling tools. So you label your images 
and then you get these annotation files out of them. And one of the biggest pain points that 

you'll feel is that when you export your data from all these tools, they come in format specific to 
the tool, which are not like compatible with any of the models that you’re going to want to use. 

And so kind of one of our hooks is we can import all those tools and then output to all these 
other different formats. So that's one of the ways that people find us, is they're looking to 

convert VOC  XML to TF records for TensorFlow. 

And so the way that it works is you come into Roboflow, you drop in your images and 
annotations and we perform a bunch of checks up on them. Help you make sure that that data 

looks good and is ready to go for model training. We’ll help you augment your images, 
preprocess them. Do all those sorts of things that you would kind of have to do one-off Python 

scripts for and then we’ll export them and then you’re ready to train your model.

[00:03:09] JM: And how does this save time?

[00:03:11] B: Yeah. So most of our customers are looking at this as kind of a tradeoff between 
doing it themselves by writing all those Python scripts or using something like Roboflow. So we 

talked to one of our early customers and asked them like, “Hey, how much time are you actually 
saving by doing this?” And they told us that it had been on their backlog to try out a Pytorch 

torch model. They were a TensorFlow shop for quite a while but had never like gotten to the top 
of their stack, because it just seem like such a pain to switch all their image processing 

pipelines, convert all their annotation formats and all that stuff. And so they estimated that that 
would've taken a week of development time for their team of three. But with Roboflow, then they 
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were able to do it with a single engineer over the course of an afternoon and they had a Pytorch 

model trained and actually found that it worked better than their TensorFlow stack that they'd 
been using for quite some time. 

[00:03:57] JM: Can you explain what annotation formats are? Why are there multiple 

annotation formats?

[00:04:03] B: Yeah. So and annotation format describes where the examples are in your 
images. So when you train a machine learning model, you’re kind of training it by example 

you're showing at like, “Hey, here's the thing that I'm looking for. Try and figure out how to 
replicate these inputs that that give you.” And so an annotation format is just a way of encoding 

that. It could be XML. It could be JSON. It could be a binary format like TF record, or a text file, 
or any number of other different formats. And it seems like the reason that there is so many 

different formats is that everybody just kind of invents their own thing internally and then 
releases their stuff as open source. And so they don't play nicely together. So you have all these 

researchers that are publishing papers and they’re not thinking about like, “Oh, how are people 
going to use this to actually deploy stuff into the wild? They’re thinking about how do I get state-

of-the-art results and release something? So it’s all these kind of like hacky like academic code 
rather than production code. And then people take those research papers and they’re trying to 

convert them into production, and they end up like having to use basically whatever default 
format the researcher had in their paper to reproduce that. And so you end up with this just kind 

of spaghetti-ness of all these file formats that don't play nicely together. 

[00:05:12] JM: Do you have a prototypical example of a company that's using Roboflow

[00:05:17] B: Yeah. So it spans the gamut. Everything from hobbyists that are building like 
raccoon detectors to train little robots to chase them out of their backyard, to some of the world's 

largest companies. So we have a Fortune 500 oil and gas company that using Roboflow to train 
models within their security camera footage to look for oil leaks in their pipeline. So previously, 

this was something, these are like unmanned 10,000 miles of pipeline and they have like these 
little leaks that turn into big problems and they don't like get addressed until a human notices 

them. So they’re training models to automatically look at their security camera footage vision 
real-time and alert them so that they can fix the tiny leaks before they become big problems. 
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[00:05:57] JM: Let’s go through a little bit more on the raccoon example. So let's say I'm 
training a model to recognize raccoons and chase them out of my backyard with maybe some 

served drone or like a Roomba like robot. What would be my workflow with and without 
Roboflow?

[00:06:14] B: Yeah. The raccoon detector is a funny example, because we actually have six 

distinct users all working on detecting raccoons. And so one of them is trying to automatically 
turn on their garden hose to spray the raccoons. One of them has this little spider robot that he 

is trying to train to like chase them. So it’s been kind of a surprising niche that we’ve found. 

So kind of that the workflow would be most these guys are using like nest cameras to export a 
bunch of images from your nest camera. Find some of the ones that have raccoons and some 

of the ones that don't. So like one guy is trying to make sure that his robot doesn't also chase 
his dog. So he wants to label his dog. He wants to label the raccoon. And then he'll end up 

training a model to do that in real time. So without Roboflow, he'd be writing all these Python 
scripts to like after he labels his stuff to convert them, to augment the images so that it works 

well in the daytime and nighttime, whether it's a cloudy or not, if the camera happens to be at a 
slightly different angle, if the wind has blown stuff around. And so instead of collecting millions of 

different images, he’ll do something called data augmentation, which it just like helps your 
model generalize more by giving it more examples that aren’t all exactly the same. So those are 

some examples of things that you’d be writing Python scripts to do and are very specific to like 
the input format for one specific model.

With Roboflow, that's all done within the platform. And so you can try a whole bunch of different 

experience experiments much more quickly and then export them and you can try maybe 
efficient det or Yolo V5 or Yolo V4 on Pytorch, TensorFlow, Darknet, and you can try all those 

things over the course of a week rather than having to spend a week each basically. 

[00:07:53] JM: What have you had to build in Roboflow? Tell me a little about the infrastructure.

[00:07:59] B: So probably the biggest parts of the app are like our annotation parsing system. 
So we support all these different formats importing and exporting from them. So I think when 
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you do all the combinations, it's like 400 or 500 different combinations of X to Y formats. And 

previously if you like Google like converting Pascal VOC to COCO JSON, there's like a specific 
Python script that you can find on GitHub to do that one specific thing. And so we spent a 

considerable amount of time basically abstracting that so that it's really easy for us to provide 
this kind of abstraction layer over the top of all these different formats. 

And then we have a pretty robust image transformation pipeline that spins up servers to do 

things like rotating images and adjusting their brightness and contrast, resizing them and getting 
them ready for training. And then we also have another pipeline that takes all of those 

transformed images and compiles them together into one output format. So that might be a TF 
record binary format for TensorFlow, or it might be like a zip file containing all your XML and 

JPEG images for another format.

[00:09:04] JM: Tell me about some of the particularly hard technical problems you had to solve 
in building Roboflow.

[00:09:09] B: Yeah. So some of things that were surprising to us, I guess not surprising, but we 

didn't think that we’d have to address them so quickly, was the sheer scale of things. So we 
started out by using cloud functions to do a lot of these tasks. What we quickly learned was that 

cloud functions have some technical limitations in terms of like the amount of time that they can 
run and the amount of memory that they can use. So you can imagine if you’re creating a 

dataset with a thousand images, that might work fine. But then all of a sudden somebody 
uploads 250,000 images and all the sudden like that just breaks. And so we had a kind of 

replicate and abstract away from that. And so we internally have basically our own version of 
Google Cloud functions or AWS Lambda that runs on Docker containers now instead so that we 

can create images of arbitrary size. We can add GPs to those that do some things that you're 
not able to do with the native serverless cloud functions. 

[00:10:04] JM: Sorry. So what were the problems with the cloud functions?

[00:10:07] B: Yeah. So I think on AWS and Google, it’s 2 GB and 3 GB is the maximum amount 

of memory and disk space you can use on those. So you can imagine, like if you're trying to 
create a zip file that's a hundred gigabytes, it's really a tough technical challenge to do that on 
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an instance that can have maximum of 2 GB of memory and disk space storage. And they’re 

also limited to only running for a certain amount of time. So I think on Google that's nine 
minutes. So if you're trying to download 250,000 images and process them all on one cloud 

function and output one file, if it takes longer than nine minutes, you're just kind of out of luck. 
And so by building our own version of those sorts of tools, we can eliminate some of those kind 

of hard barriers that you're not allowed to overcome on serverless cloud functions. 

[00:10:56] JM: So if you’re trying to be this sort of middleware stitching together all these 
different frameworks and toolsets, it seems like there's probably some issues in being that glue 

between them. Are there any particularly difficult problems that you’ve had to solve in gluing 
together these different frameworks?

[00:11:17] B: I don't think there’s necessarily like big technical challenges there. I think there is 

like philosophical things that we've had to overcome. So you can imagine some of the big cloud 
providers are also trying to be this like end-to-end machine learning platform. And if you look at 

AWS’s like incentives on their platform, they really want to lock you into using the AWS labeling 
tool, and the AWS notebooks, and the AWS training, and the AWS deployment stuff. And what 

we found is that doesn't really work well for a lot of teams. There are all these good point 
solutions out there that aren’t built by AWS, and like that kind of end-to-end platform where like 

you either take the whole thing or none of it at all just doesn't work for folks. 

And so I think one of our like core observations is that if we can help people use the best point 
solutions for each step of the pipeline, that can be really powerful. And is one of the reasons that 

people choose us is that we’re like interoperable with all these other tools. We don't have to like 
control your training flow. We don't have to control your labeling. We can just play nicely with 

everything and help you use those altogether and be kind of the tool that just reduces friction 
between all these other parts of the pipeline.

[00:12:28] JM: Do you find that people pick a particular cloud provider and just go all-in on it 

like on AWS? Or they go all-in one the Google TensorFlow stack? Or do you find the people 
really want heterogeneity?

[00:12:42] B: Yeah. It really depends. We have a couple of different like customer types. And 
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certainly there are like really advanced companies that have built out a team of PhD's that are 

working on computer vision. And those kind of more mature teams definitely have their workflow 
that they prefer. But there're also these other teams that we find that are kind of just getting 

started. We think one of our like core, like mission statements, is that we want to make 
computer vision something that all software developers can use. You shouldn't have to hire a 

team of PhD's and be a company the size of Google to use it. And so by letting these teams 
experiment more quickly with their existing engineering resources, you let them come to find 

what works best for their problem. 

And so when you're first like exploring a problem space, you don't know like whether 
TensorFlow or PyTorch is going to be the right solution for your problem. You probably want try 

them both. And so we help you like navigate that kind of problem space really efficiently and 
quickly and find what's going to work best for you. And yeah, we have seen teams like switch 

from TensorFlow to PyTorch, but usually it's in the course of experimentation. Machine learning 
is one of those things where like it's never done. You’re always iterating and trying to find 

something that works a little bit better. And so if a new model comes out and it is has research 
results that work better but the code is in PyTorch and you’re in TensorFlow, you don't want to 

be stuck in your legacy platform if there's something that's going to work better. And so helping 
them experiments and use whatever tool is best at a given moment in time I think has been 

really valuable. 

[00:14:07] JM: Tell me more about what you need to do to integrate with the labeling providers.

[00:14:12] B: Yeah. So it's actually been interesting. We assumed that most people who are 
doing computer vision and production, we’re going to be outsourcing their labeling to tools like 

scale or AWS SageMaker ground truth. But what we found is even a lot of big companies are 
still kind of in this experimentation phase where they’re just doing things in-house. And so 

they’re having these highly paid, highly skilled engineers that are labeling bounding boxes on 
their images just because like It's kind of big like problem and pain point for them to go out and 

source of provider. And a lot of these providers have like big minimums that they have to spend. 
And there's like a procurement process. 

And so we feel like if we can like reduce the amount of friction to that and free up the time of 
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developers to be working on the things that actually need their unique skillset, that can be really 

powerful. So right now we integrate with basically all of the self-serve labeling tools. So whether 
they've used CVAT or VoTT or another like tool to label the images themselves, they can import 

those all directly into Roboflow. But we also have helped many teams outsource their labeling 
for the first. And so there's a bunch of different providers. They all have their own pros and cons 

and we feel like we can help match those users with the labeling provider that’s going to be right 
for their use case that can provide a lot of value to them as well. 

[00:15:30] JM: And what about the model training tools? What are the integration with the 

model training tools like? 

[00:15:37] B: Yeah. So we have a model library that has co-lab notebooks that are set up to do 
most of the like modern, state-of-the-art object detection models. So you kind of pick those up 

and play around with those. We also have integrations with all three major cloud providers, 
AutoML tools. So you can try Google’s, you can try Microsoft’s, and you can try Amazon's and 

kind of get a baseline for what is the like naïve level of performance that you'd get just kind of 
off-the-shelf. And that something that's hard to do right now. You’d have to integrate with each of 

their individual APIs to try them out. But with Roboflow, you can just try all three and see how it 
works. 

One thing that we’ve found is that a lot of these software developers that aren't machine 

learning experts that are using computer vision via Roboflow, they go to our model library and 
they have these like Jupyter Notebooks, and all they're doing is hitting enter-enter-enter-enter. 

They're not really like doing anything custom. And they end up with this weights file that they 
don't know what to do with them. So when they want to deploy it and use it in their application, 

they’re then trying to like figure out how do I spin up servers and host this and like build DevOps 
infrastructure around that?

And so one of the places we’re moving into is providing our own sort of hosted training and 

deployment environment for some those users who just want to use computer vision, get 
something that works well enough, built it into their application and not really worry about all the 

details of tuning their model and whatnot. And so as we have talked to users, we've found out 
that while we’re solving a bunch these problems and eliminating like the boilerplate Python code 
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that they have to write, by getting them over that hump, they then hit these other problems like, 

“Oh crap! Now I have this trained model. What do I actually do with that?” And so we’re really 
trying to make that easy for them to integrate computer vision to their apps and focus 

exclusively on the things that are unique to their app and not the things that are kind of this 
boilerplate computer vision infrastructure that's reinventing the wheel of things that's already out 

there and not providing unique value to their domain-specific problems. 

[00:17:39] JM: On your website, you have some areas where people can share datasets and 
seems kind of random compared to your other tools. What's the objective with these datasets, 

the shared datasets you have on your website?

[00:17:54] B: Yeah. So we feel like beyond providing the tools, if we want to enable any 
developer to use computer vision, we need to kind of like chop down those barriers that make it 

hard. And one of the things that we found is that a lot of developers, they have like a problem 
that they have like this inkling of an idea that they could use computer vision for. But they don't 

have like a dataset that they've already gone out and collected. And so they just like this hump 
where they don't have something to try it out on. And so we figured one way that we could get 

them over that hump was to provide a whole bunch of datasets that they could use to play 
around and try things out. 

And so we curated and released a bunch of open source dataset. Some of which we collected. 

Some are from our users that were willing to share those with other researchers and some that 
were already open-source that we either improved or converted. And so that's kind of like one of 

those humps that like if you don't have a data, it's really hard to get started learning computer 
vision. And kind of along those lines, we feel like education and like teaching people how to use 

computer vision is another big stumbling block. If you're such software developer, computer 
vision can be one of these things where it feels inaccessible and like something where you'd 

have to go back to school to use it. And in fact, I was a software developer before with no 
computer vision or machine learning expertise, and at one time it seems like an insurmountable 

hurdle to me too. And so we feel like educating people and like putting out tutorials and making 
sure that we’re like doing everything that we can to democratize this technology and make it 

accessible and a part of every developer’s tool chest is something that we should play a part in. 
And so we have tutorials, we have YouTube videos. We have those public datasets. We have 
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those open source models, and we’re really trying to do everything we can to make that hurdle 

to getting computer vision into your app as low as possible. 

[00:19:42] JM: And what are the main hurdles to getting computer vision into my application 
today? Let’s say I’m building like a to-do-list app. I'm a brand-new developer. I’m building a to-

do-list app and I want to have computer vision in my application because I want to – I don't 
know, take a picture of a blanket and have it recognize that it's a blanket so it can tell me to fold 

the blanket and put a to-do on my list for folding a blanket. Why is that hard today?

[00:20:15] B: Yeah. So one of the biggest hurdles actually is for software developers to even 
realize that this is something that they can do. I mean, for the first 50 years of computing, 

teaching a computer to understand image data was like an intractable problem. It was just 
something that even with a team of PhDs you can do. And it's really only been in the past 

decade that this has become accessible to not only teams of PhD's, but just a single solo 
software developer off the street. 

And so one of the biggest challenges is just convincing people that it is possible and that it is 

something that they can do. Once you get them over that hump, a lot of the other stuff is just 
normal software engineering stuff of getting a Python script up and running and following a 

tutorial and getting through things. And then I think the last challenge is on the deployment side. 
It gets kind of complicated when you're looking to actually like deploy it into the wild, because 

whether you're deploying it on a server or on a mobile phone or an embedded device 
somewhere else, you almost have to start from the end and think about like, “Where am I going 

to put this?” And then that informs a lot of the decisions beforehand. And so it's kind of like this 
like forwards pass of I need to figure out that I can do this. And then a backwards pass of, 

“Okay, so I think this is tractable. Now, I want to do this for real. If I want to put this on a 
Raspberry Pi, what considerations and decisions do I need to make before that to make sure 

that the model that I come out with is deployable there?” And so, yeah, I think it's kind of like an 
iteration process of getting over the hump of like training your first model and then creating your 

first project that you can use in the wild. 

[00:21:55] JM: Let's take it from the top again. Let's say I have a bunch of images of a 
chessboard and each image has like a configuration of a board situation and I want to generate 
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like solutions to use to those chess problems. What would be my process for using Roboflow do 

that?

[00:22:20] B: Yeah. So actually this is a great example. My cofounder and I actually built a 
computer vision powered chess solver for a hackathon Techcrunch Disrupt last fall. So maybe it 

would make sense for me to walk you through how we did that. So we came into this hackathon 
with basically nothing. We had a chessboard. We had an iPhone. We had our laptops and that 

was it. And so the first step was setting up the chessboard and setting up a bunch of positions, 
taking pictures of those with our iPhone. And then you offload those pictures from your phone. 

And now you have the unlabeled images. So you need to label those images. 

We brought those into a tool on the Mac called RectLabel, which creates indentations in a VOC 
XML format. So you go through, you draw a box around each individual piece. You tell it this is a 

white queen. This is a black queen. This is a pawn. And then you have this kind of serialized 
format of what is the state of the chessboard. And then from there, at the hackathon, because 

we didn't have Roboflow yet, we run a bunch of Python scripts to like modify that, resize the 
things, create some augmentation so that it would work depending on different lighting. With 

Roboflow, you would just drop those images and annotations into our software and you get a gui 
where you could play around with all those different settings. 

At the hackathon, we then train the model. We used Apple's tool called CreateML, which is a no-

code training platform. With Roboflow, you could still do that. You just click, “Hey, I want these 
annotations and create ML format.” Hit go. You get a zip file. You drop those into the app and hit 

train. You could also with Roboflow say, “Hey, I want to train these on AWS with their recognition 
custom labels.” Or I want to use Roboflow Train, which is our competitor to that. You click a 

button, you get a model. 

So for us, training the model at the hackathon was something that we did overnight the first 
night. So while that was going on, we are working on scaffolding out the app that was going to 

consume this model. And so it was taking images from the iPhone camera. It was going to feed 
them through this black box model and get back JSON results essentially of like is it looking at a 

chessboard? Where are the pieces? And then you have basically a traditional problem to solve, 
right? You have the location of these pieces that you have serialized to like say, “Okay, so this 
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X-Y position represents this position on the board.” And once you have that, then you can feed it 

to like a chess solver app. I think the one that we were using – I can't remember it. I think it was 
Stock Fish at the hackathon. And so basically like you’re treating that computer vision as a black 

box that like converts your image into like usable computer data. And so it’s like these two 
concurrent processes of developing the app and then developing the model that then end up 

working in tandem. 

[00:24:59] JM: The different phases of using Roboflow; analyze, preprocess, augment, convert, 
export and share. Could you go through each of these in a little more detail?

[00:25:12] B: Sure. Yeah conversion, I think we we've touched on. There're all those different 

formats. And so we’re like the universal conversion tool where you can import in one format and 
export in another. And one of the ways that we like to think about that is if you are an author and 

you were spending a bunch of your time converting like .doc to .pdf as part of your process, that 
would be ridiculous. And that's kind of how we think about engineers and machine learning 

people spending a bunch of time converting formats and writing python scripts to do that. It’s 
just kind of a ridiculous thing that you would have to spend any time writing file conversion 

formats in 2020. And so that's kind of the piece of the process that we handle with the 
conversion side.

On the analyze side, so we have these tools that once you upload your annotations into 

Roboflow, we can perform checks and like tell you, “Oh, hey. This was a malformed indentation 
that's going to cause problems with your training script.” We automatically fix a bunch of those 

and we bring to your attention other potential problems. So as examples of that, some things 
that you run into you when you're training a machine learning model are like class and balance. 

So let’s say you have your chessboard images and it turns out there is 16 pawns on the board 
for every one queen. You’re going to end up with your model overweighting and seeing way 

more pawns than it sees queens. And so you'd probably want to rebalance those things so that 
your model is not able to cheat by just like guessing pawn, because that's what optimizes its 

score, because in like the later game, like there's going to be less pawns and more queens 
relatively. 

So we help you like identify by like class imbalance. We help you identify things like, Hey, this 
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queen on this chessboard, like in 90% of your images, it was on the exact same portion of the 

image. You might want to augment that so that your model doesn't learn, “Oh, the queen is 
always on the same white square,” and learn to basically like cheat that way. We can do things 

like re-cropping the image or translating that bounding box around or going out and taking more 
photos with more examples of the queen on different squares. 

Augmentation is what we mentioned earlier of making sure that your model generalizes. So 

doing things like adjusting the brightness and contrast, rotating it, cropping it. There are some 
advanced augmentations that you can use. One of which is called mosaic, where it will take 

multiple different images from your training set and it will combine them all together to create 
like an image that has four pieces of other images. And the purpose of augmentation is really to 

help your model generalize. If you feed it the same image over and over again, it just learns to 
memorize that particular iteration of your problem. And so by augmenting your images and 

feeding it a slightly different variation every time it sees an image, you get better results on 
images that it's never seen before. 

And then on the training side, I mentioned we have all those export formats that go to 

TensorFlow, PyTorch, the cloud AutoML tools or our training, one-click training platform. And 
we’re adding support for more and more as time goes on. Our hope is to basically be that 

connector that connects every labeling tool with every training tool. And so when customers 
come to us and they’re like, “Hey, I have this like random annotation format from a Chinese 

paper that was published in 2012. Do you support that?” The answer is always yes. And we just 
spend an hour adding support for that before they get on-boarded. And our hope is to support 

every single format and every single training platform. 

And then on the share side, this is one of the big pain points that we felt when we were building 
our own apps, is that it feels like the olden days like before Dropbox where you would be like 

emailing around like these version 2.final.reallyfinal, and you have like multiple people working 
on these datasets. And let's say it in the olden days before Roboflow, I took 20 chess images. I 

emailed a link on Dropbox to my cofounder. He combined that with his 20 images that he took. 
Then he found a problem with one of my images and he updated it. Well, now you have like 

three different versions of the dataset and it’s like not entirely clear which one you should use or 
how you should be working together on that. And so Roboflow is like the single source of truth 
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for your datasets by combining them in this platform that’s like a multiuser sort of thing. You can 

religious keep track of who's done what. What are the different versions? Who trained which 
models on which versions? And make sure that you’re like staying in sync rather than having a 

bunch of different versions floating around out there that like some of them are cropped and 
some of them are resized. You really just want like your original files and then transform for your 

models in a non-destructive manner so you can experiment without like getting completely lost 
in all the data.

[00:29:49] JM: And again, the process of preparing datasets for training. Let's go a little bit 

deeper into that. So the different things that Roboflow is going to do is assess annotation 
quality, fix unbalanced classes, de-duplicate images, visualize model inputs and version control 

datasets. And then you can share them with your teammates. Tell me more about the 
preparation for dataset training.

[00:30:14] B: Yeah. So as I mentioned, like not only are all the labeling tools using different 

formats, but the training tools are all using different formats as well. And most of the time they 
don't match up with any of the labeling tools. So for TensorFlow, you have to create what's 

called a TF record, which is like a binary format that has all of your images and all of your 
annotations compiled into one file that it's going to load at training time to go through and create 

a data loader and like iterate through all of your different images. That’s something that 
traditionally you'd have to write your own Python script to take all of your images from disk, pair 

them with your annotations, encode them in the specific format and then output this TF record 
file that’s going to go through TensorFlow to do training. 

And so like you can imagine, that’s something that there are countless stack overflow questions 

about like how do I convert this format into a TF record for training with the TensorFlow object 
detection API. And so with Roboflow, it's just a click of a button. When you click export, you get 

a drop-down list, and one of the options is create a TF record, and then it will compile those 
altogether and it will either let you download that zip file to your computer or give you a link to 

that, host it in the cloud so that when you spin up your cloud server or boot up your co-lab 
notebook you just drop in that one line of code and it will downloaded it from the cloud, unzip it, 

and it will be ready for training with your model. 
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[00:31:38] JM: What problems do you think machine learning is uniquely positioned to solve in 

the next year, or 5 years, or 20 years?

[00:31:46] B: Yeah. So that's actually pretty interesting. I think one of the like opinionated 
stances that we take is that computer vision is actually its own unique beast. It’s certainly a part 

of machine learning. But we think that the tooling and solutions that are needed for computer 
vision are actually much different than the ones that are used for, say, natural language 

processing. And so I think like when you think about like what is machine learning going to do, 
it’s such a broad answer. And I think like focusing in on what is computer vision going to do is 

probably the part that I'm most suited to answer. And I think – like if I think in 20 to 30 years 
down the road, I think that the state that we’re in right now with computer vision is similar to like 

maybe how the web was in the 90s where certainly there were like e-commerce websites in the 
90s, right? But in order to build them, you had to you like invent your own database and create 

your own web server. And if you wanted to like accept payments, you had to like be an expert in 
cryptography to be able to do that. And I think as we go forward, all those things are going to be 

like abstracted and made into tools that basically any software developer off the street can pick 
up and use.

And so we think that that's kind of our mission. And when you do that, you enable all of these 

new use cases. And so if you think about like what computer vision has done to the car industry 
with self-driving cars, it’s just like this massive transformation that not only changes how cars 

operate, but also like how cities are going to be organized. And our kind of core hypothesis is 
that computer vision isn't just about self-driving cars. It's kind of like the pc or the internet where 

it’s going to touch every industry and transform every industry. 

And so if you look at kind of some of the use cases that are coming down the pipeline, I 
mentioned detecting oil leaks, but that's just the start. We have a student that is working on 

detecting wildfires from computer vision. So you can imagine having these like security cameras 
on top of weather stations that are looking for smoke. And he wants to deploy a drone at the first 

sign of smoke to like douse the fire before it gets out of control. Or we have like these other 
students that are doing human rights monitoring. So there’s this tribe in Africa called the Maasai 

people that the government is burning their villages, and he wanted to track like their migration. 
And so he's using satellite imagery with computer vision to find where the campsites were, 
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where they are now, and kind of track how this tribe is being displaced. 

And we have like companies that are building their entire company on top of Roboflow with 

computer vision. One of those was a Y Combinator company that is building a pill counting app. 
And they’re replacing this old $15,000 machine with something that runs on commodity 

hardware. And so it's going to basically like make this accessible to all these small pharmacies 
and just like make their job so much easier. 

And so I think like when you when you think into future, it's like every app or company is going 

to be able to use computer vision without it having to be a core competency and without having 
to hire a bunch of PHDs. And that's really exciting. It's like a future that I want to live in. And like 

if I could take a time machine and like travel to the future and see how amazing things are going 
be once developers have access to all this technology, it's totally something that I’d be intrigued 

by an interested in doing.

[00:34:58] JM: As a company goes from a test model to a production level model, what are the 
considerations they must take regarding datasets and dataset pipelines?

[00:35:09] B: Yeah. I mean, I think one of the biggest kind of paradigm shifts for developers 

getting into machine learning and computer vision for the first time is that it's not like a binary 
sort of thing. It's not like your machine learning model works or it doesn't. There's like these 

gradients of how well it works. And so, like traditionally, in software like you can just write a test 
and be like, “Yes, my code works. It does exactly what it's supposed to do. But with machine 

learning, it's not entirely clear like when you're done. And in fact you may never be done. 

And so it's like there’s this iteration cycle where you want to get something that works well 
enough for your first version, deploy that and then find all of the kind of edge cases where it's 

failing, and then pull that information back from your production model that like the things that 
it's not confident about or that a user reports are incorrect and then pull it back into the 

beginning of the flow and put that back into your dataset to make it more complete. You train 
another model and you go through this iteration process where you deploy it and then you see, 

“Okay. Well, what's it still messing up?” Bring that back. And like, over time, your model gets 
better and better. But you really have to close the loop. 
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And so I think like the workflow and the cycle is such that you need to like figure out what is my 
MVP? And like make sure that you're picking a problem where like you can actually deploy like 

a first version of the model and it's not going to cause like a car to run people over. Such that 
you can then figure out what are the edge cases and go back and keep iterating and making 

that model better and better every time. I think that for a lot of software developers, that's kind of 
a new paradigm where like you’re shipping something out there that you know is only going to 

work 80% of the time and then thinking about how you design your software around that 
knowing that 20% of the time it's not going to work well. And I think that that's not only a 

software problem, but also like a design problem and a business problem and a strategy 
problem that needs to be solved. And it’s kind of a new frontier for folks. And it's been interesting 

to kind of discuss that with people and have this skepticism about like what you mean my 
software is not going to be rock solid and work 100% of the time? It's just like, “What’s a 

probabilistic thing?” There are definitely use cases where having it be right 80% of the time is 
better than not trying at all. And so, yeah, it's kind of like an exercise in defining the right 

problem where you’re going to be successful rather than need something that you’re going to 
have to spend a decade on bulletproofing before you release the first version.

[00:37:35] JM: Are there some other common issues in dataset management that you've seen 

lead to poor model performance?

[00:37:41] B: Yeah. So there are a few. So one of the most common things that people run into 
is trying to detect tiny objects in their images. So you can imagine like let’s say you’re trying to 

train something on satellite data and you're trying to detect like people on a beach. Well, the 
resolution is such that those people only are a few pixels in your image. And the way that 

machine learning models commonly work is they have like an input size. And so even if your 
images is, let's say, 20 megapixels, it's going to get shrunk down to like 800 x 800 or 416 x 416. 

And those like small number of pixels in the big image end up like becoming one pixel or less in 
that shrunk down image. And so this is kind of like one of those things where it's like an 

implementation detail that if you're not a machine learning expert, you're just a software 
developer that's kind of like following a tutorial, you might not have this mental model for like 

what's actually going on behind-the-scenes. 
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And so if you have like small objects inside of your images, it turns out that a lot of times your 

model just can't detect those things, because when it gets processed by the model, it gets 
shrunk down so far that there's just not any information for it to detect. So that's one thing, is like 

detecting. If your objects are small relative to the size of your input images, you have to do 
some things to account for that. So one of those might be like tiling your images where instead 

of running your model one time on this 20 megapixel image, you shrink it down and cut it into 10 
x 10. And now all the sudden you have 100 different images that you run through your model, 

but each one, like the relative size of the object compared to the size of the image is bigger. And 
so it gives the model more pixels to work with.

[00:39:26] JM: What are the other parts of the machine learning or computer vision process 

that could be automated?

[00:39:32] B: I think that the training and deployment is an interesting area where it's not clear 
that you actually need a custom model for each problem. There is plenty of models that are very 

good off-the-shelf that you can – It's called fine tuning them. So you can like take existing 
weights that are trained on a large dataset like COCO, which is one that was released that has 

millions of images that represent a whole bunch of different things. And the model can represent 
these generic things. You start from that base and then you train it to like learn your individual 

objects. So if it’s chess pieces, the COCO dataset doesn't know anything about chess pieces, 
but you can start from, “Oh, it knows how to like identify dogs and cats.” And like the features of 

dogs and cats and like curves and like changes in patterns and those sorts of things are 
applicable also to like isolating chess pieces on top of a chessboard. And it turns out that just by 

fine-tuning this model, you can get pretty good results without actually changing the architecture 
of the model. It’s just changing the weights. 

And so you have this kind of – Like you can think of the model as like this meta-program that 

can learn a whole bunch of different domains. And so I think over the last decade, a lot of work 
has gone into like optimizing your model architecture. But I think we’re getting to the point where 

these models are good enough for a lot of problems where you don't need to do a whole bunch 
of like core research on the model architecture. You just need to retrain them on something else. 

And once you do that, like you can get to these solutions where it doesn't actually need human 
intervention. You can just like run through the same process. Get new weights, and it works 
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pretty well. 

And so I think doing that and then deploying it is one area where – Certainly, for some 

problems, you're going to need to do some core R and D. But for a lot of problems, you can just 
kind of automate that process and get something deployed that works pretty well.

[00:41:30] JM: Any other predictions about the future of computer vision?

[00:41:34] B: I think augmented reality is one that I think people have written off at this point, 

because like the early kind of example applications that people have come out with yet so far 
have been pretty underwhelming. And I think when you combine augmented reality with 

computer vision, it enables you to do really interesting things. And so when you hear Tim Cook 
saying that he thinks that AR is going to be like the follow-up to the world's most successful 

product in the iPhone, I think people roll their eyes. They’re like, “AR is just this gimmicky thing 
that lets you like put Pokémon on the street.” 

But, really, when you combine it with computer vision, it allows you to put like a software overlay 

over the top with the real world, which I think is really interesting and thinking about like taking 
real-world objects and enhancing them with software for the first time without like embedding a 

computer in the thing to make it smart. You just make it smart by adding a software layer that 
understands what it's looking at and can add features to it is something that is going to take 

people by surprise. And so I think I would not write-off AR just because the first version of it was 
pretty underwhelming. I think that there's a huge like greenfield of opportunity there. 

[00:42:44] JM: Okay. Well, thanks for coming on the show. It’s been great talking to you.

[00:42:47] B: Yeah, likewise. Thanks for having me.

[END]

	 © 2020 Software Engineering Daily	 �19


