
SED 1079 Transcript

EPISODE 1079

[INTRODUCTION]

[00:00:00] JM: Kubernetes has become a highly usable platform for deploying and managing
distributed systems. The user experience for Kubernetes is great, but it’s still not as simple as a
full-on serverless implementation. At least that has been a long held assumption. Why would
you manage your own infrastructure even if it is Kubernetes? Why wouldn’t you use autoscaling
Lambda functions and other infrastructure as a service products?

Well, Matt Ward is a listener of the show and he’s an engineer at Mux, which is the company
that makes video streaming APIs, and Matt sent me an email that said that Mux has been
having success with self-managed Kubernetes infrastructure, which they deliberately opted for
over a serverless deployment. I wanted to know more about what shaped this decision to opt for
self-managed infrastructure. I wanted to know about the costs and benefits that Mux has
accrued as a result. Matt joins the show today to talk through his work at Mux and the
architectural impact of opting for Kubernetes instead of a fully managed serverless
infrastructure.

If you have an idea for a show, you can write about it on softwaredaily.com. We are always
looking for new show ideas and you can also post about your company. You can post about the
projects that you’re working on. You can post jobs that are related to those companies or
projects, and we’re going to look for the best ideas and we want to cover things that are
interesting as well as share the job postings that people post that are particularly useful to the
audience. You can check all that out at softwaredaily.com. Thanks for listening.

[SPONSOR MESSAGE]

[00:01:53] JM: Today’s episode is sponsored by Datadog, a modern, full-stack monitoring
platform for cloud infrastructure, applications, logs and metrics all in one place. From their
recent report on serverless adaption and trends, Datadog found half of their customer base
using EC2 have now adapted AWS Lambda. They’ve examined real-world serverless usage by
thousands of companies running millions of distinct serverless functions and found half of

© 2020 Software Engineering Daily 1

SED 1079 Transcript

Lambda invocations run for less than 800 milliseconds. You can easily monitor all your
serverless functions in one place and generate serverless metrics straight from Datadog. Check
it out yourself by signing up for a free 14-day trial and get a free t-shirt at
softwareengineeringdaily.com/datadogtshirt. That’s softwarewareengineeringdaily.com/
datadogtshirt for your free T-shirt and 14-day trial from Datadog. Go to
softwareengineeringdaily.com/datadogtshirt.

Thank you Datadog.

[INTERVIEW CONTINUED]

[00:03:06] JM: Matt, thanks for coming on the show.

[00:03:08] MW: Thanks for having me, Jeff.

[00:03:09] JM: You work at Mux, and Mux is a company that makes video APIs for developers.
Explain what Mux does.

[00:03:16] MW: Yeah. Mux was founded because we believed that video is complex and really
hard for a lot of people to get started with. There’s kind of a really high barrier to entry. You have
to understand what video codex and containers are. Understand what players can support
playing back those different codex and containers, and we believed that basically your choices
were your hosted options like YouTube, where I used to work, or kind of you had to roll it on your
own. There was no simple way to get started with online video without really digging into a lot of
technical details. We wanted to create a high-level API that made it easier for developers to get
started with and build applications around video.

[00:04:12] JM: Describe how developers interface with the Mux products.

[00:04:17] MW: Yeah. At a very high level, developers have a couple options for getting videos
into our systems. You can give us a URL and we’ll go pull any recorded video or even audio file
you have on your servers or on S3 bucket or Google Cloud Storage, wherever it is as long as

© 2020 Software Engineering Daily 2

SED 1079 Transcript

it’s accessible via HTTP. We can pull that down, process it and ensure that it’s streamable to
any player that is capable of HLS playback.

[00:04:52] JM: Mux is a pretty complex and useful service and there’s a lot of services that we’ll
explore and we’ll explore your deployment options and how you came across the decision to
emphasize the use of Kubernetes instead of serverless stuff, which the conversation is going to
focus on. Before we get there, I want to talk a little bit more about your background and some of
the issues at Mux. Tell me about some of the canonical engineering problems that you
encounter in Mux.

[00:05:22] MW: I think the first kind of challenge that we encounter that kind of all developers
encounter is API design, especially in kind of developer-focused applications. One of the most
important things for us to do well that we think differentiates our products from other products is
how easy the API is to work with. Then because we’re also a Go GRPC microservices platform
internally, we have the same API design all the way down through our stack.

[00:05:59] JM: Can you tell me more about the storage and compute requirements?

[00:06:02] MW: Yeah. Kind of the high-level simple API design stuff is just the one aspect. The
reason that our kind of product becomes so challenging to engineer if you were to say roll it on
your own, is there’s a lot of computation that needs to be done in order to transcode or
repackage a video. That management layer as well of what transcodes are running, what
requests are coming in for videos that are either already transcoded or actually need to be
transcoded adds a bunch of complexity, and we actually don’t store your video fully transcoded.
If no one watches it, our videos aren’t actually transcoded and sitting on disk. We wait for
someone to actually start watching it before we started transcoding it. So that gives us a number
of benefits on the storage side and we kind of handle that with complexity in our applications at
request time.

[00:07:03] JM: The bitrate ladder calculation I think is relevant to point out here. Just as an
example of something that’s going to take some load on your server, so like somebody uploads
a video, like I’ve got Jeff’s cat video. I’m going to upload to Jeff’s awesome blog, and Jeff’s cat

© 2020 Software Engineering Daily 3

SED 1079 Transcript

video needs to be transcoded into multiple different bitrates, because lower-end devices or
mobile networks, maybe they need to consume lower bit rate video.

This is just an example of like if somebody uploads a video, there’s a bunch of stuff to do with it
on the compute side. You have these different compute services that you’re going to need. Then
you’re going to need to store the different videos. Give us some perspective on the
infrastructure problems. How did developers work with each other at Mux? Is there a platform
engineering team? How are services deployed and what’s the set up for different teams that
want to spin up services?

[00:07:56] MW: Yeah. I think we’ve been iterating on our team structure a good bit over the past
couple years, and at this point, we’ve more or less split up into a group focused on our video
product, a group focused on our data product and another group kind of focused on the shared
tooling between the two and kind of we’re acting more as consultants in the software reliability
engineering realm as well. Then there is our product team where we have a head of product
and a product manager for each of our products and we have one designer that jumps between
the two as he can.

[00:08:38] JM: Okay. We’ve covered kind of what engineering looks like at Mux. Now let’s talk
about how you’ve architected this system. You connected with me over email and we were
talking about serverless versus Kubernetes, and this is a decision that a lot of companies have
to make, like do you want to roll your own infrastructure in the sense of Kubernetes these days,
which is much easier than rolling your own infrastructure in the past, or do you want to defer
everything to serverless and use managed services, managed databases, managed machine
learning systems, AWS Lambda functions? Tell me about the pros and cons of building on a
serverless platform.

[00:09:18] MW: Absolutely. I think one of the biggest pros for going serverless is you have to
worry a good bit less about capacity planning and ensuring that you have enough compute
resources to handle your incoming requests. A bunch of platforms such as AWS Lambda give
you some knobs here, but most of the time they’re kind of handling kind of the autoscaling under
the hood for you and you don’t have to really worry about what size instance do I need. You kind
of just almost don’t think about capacity.

© 2020 Software Engineering Daily 4

SED 1079 Transcript

As you’re kind of growing, you don’t have to, again, worry like, “Oh! Were the decisions and
commits that I made last month necessarily the same decisions that I want to make again this
month or this year?”

Auto scaling is kind of one of those things that is actually working really well in Kubernetes now
as well. You can kind of tie in to Kubernetes APIs and run the horizontal pod auto scaler and
your cluster auto scaler and get a lot of those similar features out of your Kubernetes cluster
that previously your serverless APIs would just kind of handle for you.

There's a good bit more configuration that's required if you're going to be running on Kubernetes
and you have to obviously learn a good bit more I think when you are running Kubernetes
clusters and your application on top of Kubernetes. But generally, I think there's kind of a good
bit of convenience provided to you if you're sticking with serverless.

In contrast though, you're tied to kind of the specific pricing models of whatever serverless
platform you are working on. So you have a little bit less freedom when it comes to buying
compute and storage because of kind of the platform you're tied to. You’re not able to kind of
evaluate as many options when you're trying to figure out where and how do I run my
application.

[00:11:27] JM: What kinds of scalability problems can you encounter with serverless products,
or do those exist? Do they just scale to infinity?

[00:11:36] MW: I have heard mixed things on this. Again, at Mux, we don’t actually run anything
serverless. I’ve heard some things around Lambda and there are some certain levels that you
hit. I think it's like 3,000 concurrent Lambda invocations where after that you need to start
purchasing additional compute from Amazon more explicitly. But I'm not super familiar with the
details of once you get up there with scaling a Lambda application, because we don't do that at
Mux.

[00:12:07] JM: If you did go all-in on serverless at Mux, what would you be using?

© 2020 Software Engineering Daily 5

SED 1079 Transcript

[00:12:13] MW: I think if you went all-in on serverless, I would probably be looking toward
something like your Lambda APIs. There's also Knative, which is starting to become an
accepted platform for running serverless style applications on Kubernetes. I’d probably be
looking at one of those two.

For our compute, we are running transcoding software. So we’d be eyeing how long can those
processes run for? How much RAM can they actually use because they have to pull a lot of
video in-memory in order to actually do the transcoding processes and how many parallel cores
can we take advantage of in order to actually run those transcoding processes? I am not sure
that most serverless providers will give us enough resources, and storage is kind of the last
thing there. You have to figure out how you're interacting with a disk in order to – Where you’re
writing out that data.

[00:13:14] JM: Just a little bit more on serverless products. Are there monitoring issues with
serverless products?

[00:13:21] MW: Yes. I have only looked at Amazon's Lambda most closely here, and the most
interesting challenge I see around monitoring with Lambda is you hit a certain point where you
can say, “I will get metrics every 30 seconds or one minute.” I forgot exactly what the minimum
there is, but different platform providers will give you different intervals at which they will scrape
your application for metrics or your application can push out metrics and their monitoring
systems aggregate those metrics. there's kind of a limitation to the options provided there that
kind of pushed us more towards the Prometheus and kind of having a metrics endpoint on our
applications and being able to really control the frequency at which we scrape different
applications. That gives us a better understanding in closer to real-time power applications are
performing. If we don't feel that we’re getting enough real-time feedback, we have the ability to
kind of tune down the scrape intervals on our metrics endpoints so that we can see more quickly
whether the actions that we’ve taken are helping to resolve an ongoing incident, or issue, or if
maybe you were making things worse by accident.

[00:14:49] JM: Okay. So rather than talking about fiction, let's talk about reality. You are running
Kubernetes. Give me an overview of the actual infrastructure deployment that you have at Mux.

© 2020 Software Engineering Daily 6

SED 1079 Transcript

[00:15:01] MW: Yeah. We run across two clouds today. We run on Amazon and Google's cloud.
For legacy reasons, most of our data infrastructure is currently on Amazon and most of our
video infrastructure today is on Google and we are currently working to kind of expand the
number of clouds we’re running our video infrastructure on.

Our frontend API servers actually today all run in Amazon and they are kind of the frontend to
our two kind of backend services. For the data product, that's mostly databases in AWS that we
run and host inside of our Kubernetes clusters. Then we talk over HTP over to our clusters in
Google cloud, which is where we have a much more complex infrastructure around our video
product. There're a number of workers. We’re doing transcoding. There’s kind of this scheduler
that orchestrates all of that and kind of access the broker between incoming requests for video
chunks or segments, and kind of these workers which will actively transcode them.

There's obviously the traditional kind of database applications there handling our internal
management of what assets do we have on file and what customers do we have. There's a
billing, an accounting system there as well so that we can know how many minutes of video we
have actually received from a given customer and how many minutes of video we’ve delivered,
and that kind of ends up being a separate system running on top of incoming CDN log data.

On the delivery side, we don't just deliver right from our Google Cloud regions that we run in.
We actually partner with a couple CDN's, and those CDN's help us get kind of a better global
delivery footprints so we can get those videos closer to the end viewers.

[00:17:14] JM: All right, great. Are you using managed Kubernetes service or are you deploying
your own Kubernetes entirely on something like raw EC2 instances?

[00:17:24] MW: Yeah. We’re running our own Kubernetes right now built on top of Kops. We’ve
actually forked Kops for a couple reasons. The first one was that when we were using Kops in
GCE, we wanted to use some local SSD's and a couple other features that didn't exist in Kops.
We had to make some modifications there. But generally we have rolled our own Kubernetes in
order to unify the developer experience across our two clouds. When our developers go and
look for monitoring, they know the exact host names to go to to pull up Grafana or Prometheus
and rerun kind of the Elasticsearch stack for logging so they know how to get to Kibana and use

© 2020 Software Engineering Daily 7

SED 1079 Transcript

that and whether or not their application is running in Amazon or Google. No matter what, they
have the same kind a set of tools to debug and actually run their applications.

[SPONSOR MESSAGE]

[00:18:38] JM: When I’m building a new product, G2i is the company that I call on to help me
find a developer who can build the first version of my product. G2i is a hiring platform run by
engineers that matches you with React, React Native, GraphQL and mobile engineers who you
can trust. Whether you are a new company building your first product, like me, or an established
company that wants additional engineering help, G2i has the talent that you need to accomplish
your goals.

Go to softwareengineeringdaily.com/g2i to learn more about what G2i has to offer. We’ve also
done several shows with the people who run G2i, Gabe Greenberg, and the rest of his team.
These are engineers who know about the React ecosystem, about the mobile ecosystem, about
GraphQL, React Native. They know their stuff and they run a great organization.

In my personal experience, G2i has linked me up with experienced engineers that can fit my
budget, and the G2i staff are friendly and easy to work with. They know how product
development works. They can help you find the perfect engineer for your stack, and you can go
to softwareengineeringdaily.com/g2i to learn more about G2i.

Thank you to G2i for being a great supporter of Software Engineering Daily both as listeners
and also as people who have contributed code that have helped me out in my projects. So if you
want to get some additional help for your engineering projects, go to
softwareengineeringdaily.com/g2i.

[INTERVIEW CONTINUED]

[00:20:26] JM: Okay. How many Kubernetes clusters do you have?

[00:20:31] MW: Yeah. We run each cluster in a given region. Our clusters are high-availability
and that they span multiple availability zones. That ensures that if a single availability zone has

© 2020 Software Engineering Daily 8

SED 1079 Transcript

issues, that whole cluster should keep operating without any problems. We kind of run bigger
Kubernetes clusters. In Google, we run in two regions. That's two clusters there, and then we
have kind of a staging and tests cluster. Then in Amazon, we've got kind of a similar set up, but
we’re running in one region there and kind of, again, we don’t have a staging and test set up. I
think that totals about five and then we've got the random tinkering going on all over the place.
There're probably more than 5, but 5 that are actively maintained.

[00:21:26] JM: Now, if you're rolling your own everything, then that means you got to run your
own Redis and databases and Elasticsearch and whatnot, and these things all require servers.
Kubernetes is your server infrastructure. That means you are managing servers that are
underlying these databases and data services. I believe that the sophisticated way to do this is
with a Kubernetes operator in many cases. Can you explain what a Kubernetes operator is?

[00:21:55] MW: Yeah. Kubernetes operators operate on top of what are called custom resource
definitions. What you're able to do is define higher-level constructs in the Kubernetes API that
allow you to express things, like I want a Redis cluster with three Redis Sentinel nodes. So you
don't have to worry exactly about the details of how those Redis master and slave setups are
handled. The operator ends up constructing the actual stateful sets or deployments or whatever
the operator decides is the appropriate Kubernetes objects to create given your inputs in the
custom resource definition. That makes it so that as developers, we don't have to think about
every environment variable, every volume, or every kind of networking interface between each
of these individual instances of the applications we’re running. Instead, we can just say, “I want
a Redis,” and it is able to help orchestrate the creation of that application.

This kind of makes it a lot easier for developers to get going. It almost brings it up to the APIs
that you might see from something like dedicated service providers where you kind of would
place a request and say, “I want a Postgres database,” and that Postgres database you might
specify, “I need a two-core database with two gigs of RAM or four gigs of RAM.” Whatever you
think is appropriate for your application.

A lot of these operators have that level of control that makes it feel very much like what is your
serverless style RDS or other hosted database product that you might use. But more and more
people are creating operators that mimic a lot of that behavior down even to backups. You can

© 2020 Software Engineering Daily 9

SED 1079 Transcript

define another custom resource definition, let's say, for your Postgres database that says take
backups every two hours or every 12 hours, whatever you think is appropriate for your
application, and the operator will say create a Kubernetes cron job for you.

A lot of the community is really coming together to standardize on implementations for a lot of
these applications that normally you would kind of reach out and say, “Oh! I don't want to
manage this database, or I don't want to manage figuring out how to organize a Redis cluster. I
don't want to read the documentation.” Operators are starting to get to the point where they
provide a higher level construct that lets us work more quickly and easily.

[00:24:50] JM: What's required to deploy one of these systems with an operator?

[00:24:54] MW: Yeah. The only thing that tends to be required is Kubernetes and the controller.
Operators join into your Kubernetes cluster via a custom controller. If you are – We’ll use the
Redis example that we’re talking about earlier. If you're deploying Redis and you want to use a
certain operator, you deploy the controller for the Redis operator, and that controller installs a
custom resource definition, which is basically an API spec that extends the Kubernetes API, and
that controller then reacts to the creation of these custom resource objects in the Kubernetes
API and it's able to then go and create the appropriate other objects.

In the case of this Redis example, it would know, “Okay, I see you want a Redis. You've asked
for a three node Redis cluster. I’ll do that as one master and two slaves and it will bring up the
master first and then the kind of two slaves and set up replication appropriately and ensure that
that cluster stays healthy.” The cluster continually reflects the spec that you have provided in the
Kubernetes API. If all of a sudden you change your mind and say, “Oh! I actually want a five-
node cluster.” The operator then that’s running sees this object has changed and it's able to do
what's called a reconciliation, and it goes and says, “Oh, well. Right now we’re running three
Redis instances in the cluster. You've asked for five. Let me go and add an additional two and
configure those correctly and ensure that they stay healthy in the cluster as well.”

[00:26:45] JM: Okay. The deployment of an operator-based system, like if you wanted to deploy
a Redis, it sounds like operating a Redis cluster with operators on Kubernetes is not
considerably more difficult than deploying ElastiCache on AWS, something like that.

© 2020 Software Engineering Daily 10

SED 1079 Transcript

[00:27:08] MW: Yeah, I think that that's totally true and that's kind of what we’re really seeing
with this whole Kub native approach that people are talking more and more about, which is less
and less do we have to worry about the details of how to actually spin up applications if the kind
of application creators are providing these operator controllers that are able to help set up these
applications. I think more and more what we’re going to see is these applications won’t just set
up. They’ll continually actively ensure the healthy operation of those applications as well.

They might have things, in the case of like an Elasticsearch, if you're able to codify in your
custom resource definition that this is a logging cluster and I have logs written every day, you
might be able to freeze older indices automatically in order to optimize the performance of that
Elasticsearch cluster. A lot of these kind of more complex operations that traditionally we as
application human operators have been taking on will move into these more complex pieces of
software and they will almost emulate your entire software reliability engineering team and a lot
of the kind of reactive things that they do.

[00:28:37] JM: Tell me a little bit more about what cloud provider systems you are actually using
if you're not using managed services like ElastiCache.

[00:28:47] MW: Yeah. I think there's a certain set of products that cloud providers offer that you
really need to use. Otherwise, you have kind of more downside than upside. A perfect example
of this would be Google Cloud Storage is something we used to actually send our completed
trance codes off of the in-cluster disk out to kind of longer-term storage. We don't exactly want
to manage our own storage cluster because the cost of doing that in Google compute engine
and keeping hot disks online there is so much higher than actually writing out to Google Cloud
Storage. So we choose to use Google Cloud Storage as kind of our storage backend for a lot of
our application because of that kind of cost difference.

In addition, on the Amazon side, we actually still do use some RDS. We have had some
problems running our Postgres in a really, really reliable fashion early on. Some of our older
databases are still running in RDS, because a year and a half ago, a lot of the operators were
not as mature as they are now.

© 2020 Software Engineering Daily 11

SED 1079 Transcript

[00:30:08] JM: What would be easier to do across your infrastructure if you were using
serverless infrastructure? Is there anything, any stress or pain points that serverless
infrastructure would relieve if you were using more of it?

[00:30:20] MW: Yeah. I think one thing that comes to mind here is, early on, when we were
starting to write our applications, we had to kind of write our application platform. I don't think
that being Kub native means that you don't need an application platform. For us, we chose to
use GRPC. I am an ex-Googler, so I like my [inaudible 00:30:47]. That system was pretty
familiar to me and I was able to quickly slap together some software that got our team building
pretty quickly. I think that if you don't have someone that's really willing to pay down or own that
application platform, you definitely get a lot of benefits by starting with something like serverless.
If you have an application that doesn't have very demanding latency and compute requirements
or if you don't expect to have those in the future, I think that also is a point where it makes a lot
of sense to consider writing your application serverless especially if you're a small team.

[00:31:35] JM: Are there any other downsides to this self-managed infrastructure approach, the
Kub native approach that you've been experiencing?

[00:31:44] MW: I think the biggest one that is an ongoing challenge for us is figuring out how
many pods to repack on a machine. How do we pick the right machine sizes? A lot of these kind
of decisions require an active kind of participation in your cluster management. Your actual
pods, you can't say I want 16 cores if your maximum instance size is only 8 cores. There is still
some of that kind of management that I'd say takes a nonzero amount of time.

[00:32:26] JM: What about people on your team? Are there people on the team who have
trouble operating the Kub native approach, perhaps, who are more accustomed to working out
of the AWS console?

[00:32:36] MW: I think the biggest challenge for our team has been the development
environments and there is some nice things around the consistency that you get that I think
Docker really brought to our community a few years ago. You have a really consistent build and
bills and you know that your application is going to run same on your laptop versus in
production.

© 2020 Software Engineering Daily 12

SED 1079 Transcript

With Kubernetes, we have a similar challenge, which is if you're writing YAML for, say, a
deployment that require storage and you're trying to develop that on your laptop, how do you
know that deployment is going to deploy in the same way on AWS or on Google. Where are
Kubernetes platform has different storage constructs than you might have available to you on
the Kubernetes instance that’s running in your development environment on your laptop?

I think there's still a little bit of inconsistency there across our development environment to
production that slowly the community is starting to have ways to work around that or make it a
little easier. The other challenge is when you're actually building and running your applications,
where does the compiling happen? Where does the running happen? A lot of times, you're
running these Kubernetes local clusters in like a Docker and Docker style setup or maybe you're
just using Docker as Kubernetes, and those environments might not necessarily be where the
code that you’re editing is. How are you actually building and deploying your application in your
development environment to make that iteration process as quick as possible has been a good
bit of a challenge for our team.

[00:34:32] JM: How do the costs of running your own infrastructure like this compare to if you
were all-in on serverless?

[00:34:39] MW: I think that, for us, because we’re dealing with video, and video necessitates a
lot of CPU, RAM, and cold storage or like even hot storage as well. We tried to think about
those as like raw resources. When we go do talk to our cloud providers, and right now we’re
actively renewing our contracts, we’re trying to figure out, “Okay, if we place a three-year
commit here or a three-year commit there, who's actually going to be able to offer us those
CPUs at kind of the best price so that we can pass forward our infrastructure cost reductions to
kind of our customers? We hope to kind of offer a continually cheaper product to our customers.
But the only way we can do that is if we can work with our cloud providers or even potentially
physical bare metal providers to get to the point where our cost per CPU or RAM is as cheap as
possible. That's only really possible for us to even negotiate because we took this kind of b
native approach. If we can get a Kubernetes cluster running on the hardware, we can get our
application running there.

© 2020 Software Engineering Daily 13

SED 1079 Transcript

[SPONSOR MESSAGE]

[00:36:10] JM: Over the last few months, I've started hearing about Retool. Every business
needs internal tools, but if we’re being honest, I don't know of many engineers who really enjoy
building internal tools. It can be hard to get engineering resources to build back-office
applications and it’s definitely hard to get engineers excited about maintaining those back-office
applications. Companies like a Doordash, and Brex, and Amazon use Retool to build custom
internal tools faster.

The idea is that internal tools mostly look the same. They're made out of tables, and dropdowns,
and buttons, and text inputs. Retool gives you a drag-and-drop interface so engineers can build
these internal UIs in hours, not days, and they can spend more time building features that
customers will see. Retool connects to any database and API. For example, if you are pulling
data from Postgres, you just write a SQL query. You drag a table on to the canvas.

If you want to try out Retool, you can go to retool.com/sedaily. That's R-E-T-O-O-L.com/sedaily,
and you can even host Retool on-premise if you want to keep it ultra-secure. I've heard a lot of
good things about Retool from engineers who I respect. So check it out at retool.com/sedaily.

[INTERVIEW CONTINUED]

[00:37:46] JM: What about incident response? If you're managing your own Kubernetes
infrastructure, you're going to need to handle your own outages. Is that ever an issue?

[00:37:55] MW: I think anyone that tells you that instances aren’t an issues is lying. I think no
matter how big or small you are, there's always going to be incidents. How you handle them and
how you learn from them is really what separates really good teams from kind of your average
teams. I think people that have really strong postmortem processes, really strong discussions
around what failed and why and continually question the software decisions or even hardware
decisions that you've made will lead to a stronger and better product and hopefully a more
reliable one as well.

© 2020 Software Engineering Daily 14

SED 1079 Transcript

For us, we've seen failures at basically every level. Sometimes it's a little more frustrating than
others because it's a little out of our control, but for like disk failures or instance failures, we
hope that our applications can kind of migrate those workloads and we have replication in place
to ensure that like a single machine failure, for instance, doesn't take down our whole
application.

We have seen some kind of problems in our Kubernetes platform, but I'd say they're extremely
rare compared to the number of developer kind of introduced issues. I think the old software
reliability joke of like the most reliable software is the software that no one's working on holds
true here.

[00:39:16] JM: Have there been any lessons learned from running your own Kub native
infrastructure that you would advise or try to pass on to anybody that's listening that is thinking
of deploying and running their own Kubernetes?

[00:39:31] MW: I think the number one thing I would pass on is there're, I guess, kind of some
people that have called a myth of running multiple clouds are being able to kind of move your
application wherever you like. I don't think that that's a myth at all. I think Kubernetes is really
making it possible for us to treat our cloud providers or our bare metal providers more like
compute storage kind of raw materials, if you will, in the software engineering sense. That's
enabling us to really drive our own cost down.

If you know that you're going to have kind of a lower margin business, it makes more sense to
invest in these platforms that can really enable you to have those negotiations and have those
conversations where you're trying to figure out what is the cheapest way I can run this software
while delivering a highly reliable product?

[00:40:32] JM: Are there any other guidelines for like what companies should or should not be
managing their own Kubernetes? If there's a higher margin company, for example. If I am
running some super high-margin business, a trading company, for example, or some SaaS
service, like Figma maybe, should I be entirely serverless? Because if my margins are high,
then I should just be operating and running as fast as possible.

© 2020 Software Engineering Daily 15

SED 1079 Transcript

[00:40:58] MW: Yeah, I think there's definitely a tradeoff kind of early on as well like I mentioned
with the kind of application platform and like how big your engineering team is as well and how
experienced your engineering team is with writing lower-level server code, handling shut down
signals correctly, is something that we have to worry about. If you're writing an application that’s
serverless, you kind of just have to implement the one function.

If your team doesn't have a lot of experience with those lower-level constructs of software
operations, I would probably steer away from early on investing in kind of Kubernetes native
applications without kind of having that framework around you. I think the application framework
is one of the most important things that a team kind of decides on early on, and that's almost as
important as kind of how large or how small your margins are. It's kind of just what your team is
comfortable with and knowing your own knowledge and where you want to invest, and then you
can figure out, “Okay, is serverless the place where I'm going to get the most return on my
investment or is growing our own application server the right thing to do right now? Because
foresee challenges in that scaling of compute that we don’t think we can get out of a serverless
platform, which I think is closer to the situation we were in.

[00:42:25] JM: Have you had many other conversations with companies who have made the
decision to go entirely with a self-rolled Kubernetes infrastructure?

[00:42:33] MW: I have talked to a couple, and I actually just started and advising role with a
company that is the opposite. They are currently all serverless. I think a lot of companies that
are using Kubernetes are working on kind of hosted platforms because you kind of don't have to
worry a lot about that. Okay, what's the API server doing? Do I need to scale out kind of that
component as well? You can at least reduce the amount of Kubernetes that you need to worry
about if you're using hosted Kubernetes like in EKS or a GKE. That kind of reduces your worries
a little bit, and I think most people that I've talked to are leaning down that road rather than kind
of rolling completely their own Kubernetes.

[00:43:19] JM: Tell me about the other engineering problems that you're working on at Mux
these days and how using Kubernetes native infrastructure is involved in the deployment and
the engineering efforts.

© 2020 Software Engineering Daily 16

SED 1079 Transcript

[00:43:33] MW: Yeah. One of the problems we’re working on right now is live streaming ingest.
It’s an interesting one, because this requires really long running servers that are handling really
long-lived TCP connections. We found that actually our cloud load balancers aren't up for that
task. If we are running a 12-hour live stream, that load balancer needs to hold on to that
connection for 12 hours going to the backend that is currently transcoding that incoming live
stream.

What happens when you're doing load balancing behind a load balancer is you have to respond
with a health check that says, “I am healthy and able to handle more streams.” Well, at a certain
point, these why ingest servers can't handle more than, say, two or three live streams at a time.
If they got another one, it would be overloaded and all of a sudden our transcoding would not
keep up with real-time.

The health check, we have to fail, and we have to tell the load balancer stop sending me new
traffic. What happens is the load balancer then might say, “Oh, that backend is unhealthy,” and
maybe it loses track of what TCP connections are actively being sent there. That might lead to
connection drops and resets. That leads to your live stream dropping out, and no one likes it
when their live stream drops out. So we’ve had to navigate a number of complexities there
around reconnections initially, and now we’re trying to figure out how we can actually have long-
lived TCP connections with load-balancing that preserves the active connections and enables
us to add more nodes into the pool.

[00:45:29] JM: You used to work at YouTube. How does Mux compare to YouTube?

[00:45:33] MW: I think the biggest difference between working at YouTube and working at Mux
on video is the interactions that we have with our content delivery providers. At YouTube, we
were lucky enough to have Google's infrastructure, and Google has their own CDN product.
They have internal products for storage and compute that kind of clearly advertise their tradeoffs
as best they could in a lot of places. But most importantly, they have the engineering teams right
there that are willing to support you.

When you are starting a video company and you are buying CDN's, your kind of almost buying
yourself and engineering team and buying yourself a support team. That's a very different

© 2020 Software Engineering Daily 17

SED 1079 Transcript

process and a very different interaction than we all work at the same company together. We all
have the same end goals in mind. You kind of have a more transparent conversation, I would
say, when it's inside your same company and you own everything versus I'm trying to decide
whether or not I want to buy this thing from you or not.

In addition, when you're building features, a good example of this would be geo restriction or
URL signing, is like what technologies do you support and how do you support the different
features that you end up needing? I think it was really unique to be able to file a ticket and
instantly get the person that wrote all of the code that you are reliant on.

When I have an issue with one of our CDNs, I have to file a ticket and it goes through a support
tier and through your partner manager and whoever else gets involved with handling your ticket.
Kind of the interaction is a little bit more masked, I would say, than when it's all kind of in-house.
I think that's probably been the biggest difference.

I would say that's the same for kind of the compute and storage side with like our cloud
providers and everything as well. I think you just kind of have a very different interaction when
you own the whole entire system end-to-end.

[00:47:49] JM: Okay, Matt. Well, it's been really great talking to you, and appreciate you
reaching out with your ideas around Kubernetes versus serverless. I admit, we probably have
been – At least my opinion on the show has been overly leaning on the side of just go all-in on
serverless whenever you can. It's nice to have a measured opinion of the downsides of the
serverless or the upsides of managing your own Kubernetes however you see it.

[00:48:14] MW: Well, I hope I did it justice, but it will continue to be a war I think for a while.

[00:48:18] JM: Awesome. Thanks, Matt.

[00:48:20] MW: Thank you, Jeff.

[END OF INTERVIEW]

© 2020 Software Engineering Daily 18

SED 1079 Transcript

[00:48:30] JM: Software Engineering Daily has over 1,000 episodes with lots of interviews with
engineers from Google, Facebook, Uber and lots of other engineering companies. We also have
interviews with investors. We have interviews about the philosophy of technology and culture
and strategy around starting a software business. You can find all of our episodes in the
Software Engineering Daily app for iOS and Android. These apps have all of our episodes
sorted and searchable and easy to find in categories with related links and commenting
features. You can see our greatest hits, the most popular episodes that have stood the test of
time.

If you don’t want to hear advertisements, you can become a paid subscriber for $10 per month
or $100 per year. Just go to softwareengineeringdaily.com/subscribe. We have put a ton of work
into building the apps for Software Engineering Daily. We’re creating the best listening
experience for our users, and you can check it out today by downloading the Software
Engineering Daily app from the iOS or Android app store, and I’d love to get any feedback you
have on the apps or the show. You can always email me at jeff@softwareengineeringdaily.com.

[END]

© 2020 Software Engineering Daily 19

