
SED 1037 Transcript

EPISODE 1037

[INTRODUCTION]

[00:00:00] JM: Facebook Messenger is a chat application that millions of people use every day

to talk to each other. Over time, Messenger has grown to include group chats, video chats,
animations, facial filters, stories and many more features. Messenger is a tool for utility as well

as for entertainment. Messengers used on both mobile and desktop, but the size of the mobile
application is particularly important. There are many users who are on devices that do not have

much storage space.

As Messenger has accumulated features, the iOS codebase has grown larger and larger.
Several generations of Facebook engineers have rotated through the company with

responsibility of working on Facebook Messenger, and that has led to different ways of
managing information within the same codebase. The iOS codebase had room for improvement

and Project LightSpeed was a project within Facebook that had the goal of making Messenger
on iOS much smaller.

Mohsen Agsen and is an engineer with Facebook and he joins the show to talk about the

process of rewriting the Messenger app. This is a great deep dive into how to rewrite a mission-
critical iOS application, and this team became very large at a certain point within Facebook. It's

a great story and I hope you enjoy it as well.

[SPONSOR MESSAGE]

[00:01:27] JM: When I’m building a new product, G2i is the company that I call on to help me
find a developer who can build the first version of my product. G2i is a hiring platform run by

engineers that matches you with React, React Native, GraphQL and mobile engineers who you
can trust. Whether you are a new company building your first product, like me, or an established

company that wants additional engineering help, G2i has the talent that you need to accomplish
your goals.

© 2020 Software Engineering Daily 1

SED 1037 Transcript

Go to softwareengineeringdaily.com/g2i to learn more about what G2i has to offer. We’ve also

done several shows with the people who run G2i, Gabe Greenberg, and the rest of his team.
These are engineers who know about the React ecosystem, about the mobile ecosystem, about

GraphQL, React Native. They know their stuff and they run a great organization.

In my personal experience, G2i has linked me up with experienced engineers that can fit my
budget, and the G2i staff are friendly and easy to work with. They know how product

development works. They can help you find the perfect engineer for your stack, and you can go
to softwareengineeringdaily.com/g2i to learn more about G2i.

Thank you to G2i for being a great supporter of Software Engineering Daily both as listeners

and also as people who have contributed code that have helped me out in my projects. So if you
want to get some additional help for your engineering projects, go to

softwareengineeringdaily.com/g2i.

[INTERVIEW]

[00:03:17] JM: Mohsen Agsen, welcome to Software Engineering Daily.

[00:03:19] MA: Good morning. Hello.

[00:03:20] JM: You worked on a rewrite of the Facebook Messenger app for iOS. Why was it so
important to rewrite the entire application and reduce the size of the Messenger app?

[00:03:32] MA: I think in our case, it was kind of a matter of goal setting. We decided to go for a

fairly ambitious goal and to basically become kind of the smallest messaging application in the
world and preserve all the rich features of Messenger had. As we looked at our existing

codebase, we realized that would be a very difficult thing to do in a codebase that had grown
over five years, and we had actually spent about a year beforehand trying to make the existing

product smaller and more modular and we were reasonably successful, but not to the extent
that we wanted. At some point we decided to kind of go for the more ambitious goal, which is

again rare in this industry these days of just a complete grounds-up rewrite all the core
messaging features.

© 2020 Software Engineering Daily 2

SED 1037 Transcript

[00:04:11] JM: Doing a complete rewrite is generally not a great idea. It can be very risky.

[00:04:17] MA: Yes.

[00:04:18] JM: But sometimes it can be the right choice. How did you evaluate that option of
doing a complete rewrite versus retaining a large portion of the codebase?

[00:04:28] MA: Yeah. I mean, I've been in the industry for a long time and have seen a lot of – I

mean, I think it’s probably well-known that most software rewrite fail. So it's not something you
want to take lightly especially for these large complex projects. On the other hand successful

rewrites can be truly groundbreaking for the company's that pull them off. Obviously, you might
be familiar with the history of Microsoft Windows and the transition from Windows 9X to

Windows NT codebase; or in Mac OS, the transition from Mac OS 9 to the next step and
ultimately what became Mac OS X transition which ultimately give birth to iOS. We obviously do

not take that decision lightly. It’s a very difficult decision.

What we decided to do is actually kind of go through kind of a fairly lengthy prep process where
instead of just replacing our existing product, for example, we built a new codebase and we tried

it on something like the Apple Watch and we released an Apple Watch version of Messenger,
which was well- received actually and did well.

We went to a number of steps and it took I would say almost about a year of decision-making

and trial to make sure that we have made the right decision. We kept weighing both options.
Can we just take the technology, the new technology, and put it inside the existing product or

are we better off rewriting? Again, we basically released two products. We released a watch
product and we released a standalone Messenger Lite iOS product. It wasn't released very

broadly in some countries around the world. Those two in combination kind of gave us the
signal that we needed and the confidence that we needed that this is something we can actually

do, but it would be difficult and it would take a while, which turns out to be very true, but we kind
of went for it and we did it.

© 2020 Software Engineering Daily 3

SED 1037 Transcript

[00:05:57] JM: Give me a brief history of how the size of the Messenger app has grown over

time. I mean, when you set down to rewrite this thing there was –

[00:06:09] MA: Yeah, Jeffrey. This is a great question. I don't actually have the exact numbers. I
recall a point where and we were, for sure, we had approached about 120 MB in size. Now, if

you go look at most messaging apps, they’re actually not that much smaller to be honest than
Messenger, and Messenger was by far not the largest app.

We had approached the whole problem, actually, instead of thinking about others, we actually

approached it, maybe this is where the word LightSpeed came from, the absolute limit. What is
the smallest messaging application that you can build? Then the question became, “Would you

actually be able to do it and make it as full-featured as Messenger?”

That's kind of – I think Messenger had peaked, like I mentioned, over time. It grew and features.
It grew in users. The more users you have, the more features you have, and the more features

you have, actually the larger the app and a lot of independent teams working, contributing to the
codebase each bringing their own dependencies, their own framework, their own libraries, their

own way of doing things that accumulated over time.

I think it's probably well-known that at this point we went from something like 110 to 120 MB
product all the way down to a 30 MB product, which is, again, it's not the kind of thing we

could've ever done if we did not do a ground-up rewrite.

[00:07:19] JM: As you're looking at this thing, Messenger was a gigantic app when you started
this, and as you just alluded to, you had different generations of teams that had come in and

done their work and brought in their own libraries and probably little sections or large sections of
the code that nobody wanted to touch because it’s just like –

[00:07:41] MA: It’s going to run for a while.

[00:07:41] JM: We don’t really know what that does. It’s a black box. It’s been papered over a

thousand times. How do you get your head around the architecture like that? What was the
information gathering process?

© 2020 Software Engineering Daily 4

SED 1037 Transcript

[00:07:53] MA: Oh, yeah. That's an amazing question. I think that for us, actually, we
approached it, we almost – If you're familiar with the approach of bisecting kind of a diff or

something, we approached it kind of that way where we took the two extremes. On the one
extreme, we started ground-up with the basic messaging product. We started with kind of file a

new project and said, “Okay, I just want to be able to send and receive text messages. Login to
Facebook and send and receive text messages. How much work is that?” We use that is one

extreme of the baseline.

On the other side, we did a very comprehensive partnership with the team where we literally –
Again, it’s a very difficult thing. Everybody takes it for granted. We’re able to kind of amass very

large amount of at least just feature definitions. What are the features that the different teams
have contributed? That was number one. Second, a relative rank order of how often are these

used? How key are they to kind of the user experience? Were there features that we had
already been planning on deprecating? Is this a good opportunity for us to deprecate features?

We basically, on one hand, we had a running piece of code, did basic messaging. On the other
hand, we had giant spreadsheets that had all the features. Then we began – We built a

baseline. We said, “Okay. Well, if it took us this much to do the messaging features, let’s now
look at the long tail of everything else,” and kind of extrapolated. Obviously, it’s not quite linear

like that, but we generally extrapolated from that and started coming up with estimates. We
partnered with a lot of the feature teams, which again a very bold decision on their part of

saying, “Hey, if we rewrote this, would you be able to rewrite all these features?” It took a while
on some negotiations and we set out doing it. Like I mentioned, the rest is history.

[00:09:25] JM: Okay. Describe the process for builds, and testing, and releasing Messenger, or

at least, when you started on this rewrite process, what was the lifecycle of the Messenger
product when it got built and how it got tested? How the release process proceeded? What's the

day-to-day heartbeat of Messenger?

[00:09:47] MA: Yeah. Facebook is quite famous as a company that moves fast. I think we have
a well-earned reputation that we tend to be very fast in both execution. We obviously do a

substantial effort to maintain quality and we do a high volume of release. I think often you will
see the products are updating every couple weeks in a mobile product that is releasing through

© 2020 Software Engineering Daily 5

SED 1037 Transcript

the apps or this updating every couple of weeks or so. Messenger, the way the Messenger

codebase and most of Facebook codebases are developed is you can think of it as a form of
trunk based development. We have a master branch. Actually, we live in a single repository

that’s well-known. We have a single repository that has all the codebases. LightSpeed and the
existing Messenger were basically in the same repository. There were not in different branches.

We’re building them both at the same time.

The Messenger build, basically, there is a continuous integration system as developers land
diffs as they check in code. There are nightly runs that run labs and do certain additional tests.

There are QA passes that work on these builds. It gets the leased employee dog food. It stays in
employee dog food for a while. We have a test flight branch that’s just basically direct fork of, I

believe, release candidate, that we do a release candidate, and that’s the one almost all
Facebook employees use. Master is kind of our branch that we use for development. Then it

goes through release candidate, which goes all Facebook employees, and that's the one I
believe that detours to test flight. Then that is the build that I believe every couple of weeks rolls

into the Apple Store. We did actually accelerate that cycle I believe on the LightSpeed side, but I
don't know if that kind of answers a question.

We have kind of an active trunk based development model, and one of the key challenges is we

actually had to do this not with one iOS Codebase. We had to do it with two actually. We could
not ignore obviously large deployed users on what we called at the time classic Messenger iOS,

which is the product we replaced with the LightSpeed as well as the LightSpeed version.

[00:11:35] JM: I guess I'm a little confused here. So you had two versions at a certain point that
you were maintaining. You were maintaining the old users?

[00:11:44] MA: Yeah.

[00:11:45] JM: Okay.

[00:11:45] MA: Yeah. I mean, we could not – Again, as you can imagine, Messenger is very

feature-rich and was very highly deployed to hundreds and millions of users on iOS. We did a
couple things. Like I mentioned, in the beginning we had two products. One was a light product

© 2020 Software Engineering Daily 6

SED 1037 Transcript

that we used for country testing and some parts around the world. The second one was actually

our classic product and we’re maintaining both builds.

At some point, we actually did start doing kind of these dual-boot tests where we actually put the
LightSpeed codebase inside the classic codebase and we were able to kind of deploy

LightSpeed and roll it out more gradually. Think of it as what we did, is we took features in
classic and we replaced them with their LightSpeed versions on the inside and we used our kind

of testing and experimentation infrastructure to allow us to get a signal on how good are these
features working. We did that gradually for about a year, and that's why most people probably

didn't notice this. When we actually finally went to LightSpeed, the size of the product was quite
large, because what we had done is we had kept the old codebase, added all the LightSpeed

features and it wasn't until I believe actually a week ago or so that we actually now removed all
the classic stuff. Now when you go to the app store, if you install Messenger, you go to settings,

storage, iPhone storage, you look at Messenger app size, you should probably see it
somewhere in a 29 to 30 meg range.

[00:12:57] JM: As you were doing this rewrite – Actually, I guess more broadly, can you just tell

me about some of the internal tools and technologies that Facebook has developed to make
large mobile apps easier to work with? Obviously, I know about React Native, but I don't –

[00:13:17] MA: Yeah. Facebook is – And as someone – I’ve been in the industry for a long time.

A lot of my tenure had been actually at Microsoft prior to Facebook. Facebook's development
infrastructure I think is probably has a well-deserved reputation of being legendary. It is

unbelievable what the company is able to do.

I think Facebook's approach is if there are things that are off-the-shelf that work, absolutely use
them. But if things don't scale, a lot of infrastructure that Facebook generally develops, and

actually I would say probably for the vast majority of it, contributes it back to open source. Those
things like Mercurial source code control is something that we use internally that obviously open

source and deployed well beyond Facebook. That is one of the pieces.

We have a product called Fabricator. Think of it as our GitHub kind of kind of pull request
equivalent system, where you can do code reviews and you can go do code approvals. We

© 2020 Software Engineering Daily 7

SED 1037 Transcript

have, again, the build farms and the build machines and we also are the open source sponsor

of the Buck project management. Think of that as our version of Bazel or CMake or something
like that.

Facebook developer infra has a nontrivial amount of both standard. At some point, we use

Xcode to code and debug. We use Visual Studio code in our editing and some of the native
environments. We use Android Studio or ItelliJ on the Android side, but on the other hand we

complement them with technologies that are really designed for the Facebook scale of
thousands of active engineers lending, I kid you not, probably thousands of diffs daily into a

single repo, repository.

Mercurial, Buck. On the website, we have all the expansions of the PHP programming language
with Hack, with what we called HHVM, Fabricator for source code control and review, and I’m

sure I'm missing many.

[00:15:02] JM: Right, and I guess a large swath of these do fit into the development of
Messenger.

[00:15:06] MA: Yes, absolutely. Again, I think in the beginning, to be honest, when I first showed

up at Facebook I’m like, “Wait. Why aren’t we using more off-the-shelf?” and the more I use
these tools, the more I recognized, “Okay. At some point, the scale and the velocity with which

Facebook operates requires really specialized tools for build, for code review, for nightly tests,
even systems. For example, we have a system that lets you subscribe to changes to certain

files or directories so that if I am working on a key area, I want to make sure – I mean, we have
an environment that’s very open. Any developer at Facebook can change any part of the code.

We tend to empower everyone to do that kind of engineering, but we have these systems that
let me subscribe to these files to at least see the changes that are happening and allow me to

maybe work with a team to either do them differently or review them to make sure that they are
kind of well-done.

Again, it's an amazing scale and it’s kind of a sight to behold when you finally wake up one day

and you realize, “Oh my goodness! We are building some of the largest and most complex

© 2020 Software Engineering Daily 8

SED 1037 Transcript

mobile products the world has ever seen, and it feels like a well-oiled machine. It does work,”

which is pretty wild.

[SPONSOR MESSAGE]

[00:16:19] JM: Looking for a job is painful, and if you are in software and you have the skillset
needed to get a job in technology, it can sometimes seem very strange that it takes so long to

find a job that's a good fit for you.

Vettery is an online hiring marketplace to connect highly-qualified workers with top companies.
Vettery keeps the quality of workers and companies on the platform high, because Vettery vets

both workers and companies access is exclusive and you can apply to find a job through Vetter
by going to vetter.com/sedaily. That's V-E-T-T-E-R-Y.com/sedaily.

Once you’re accepted to Vettery, you have access to a modern hiring process. You can set

preferences for location, experience level, salary requirements and other parameters so that
you only get job opportunities that appeal to you.

No more of those recruiters sending you blind messages that say they are looking for a Java

rockstar with 35 years of experience who's willing to relocate to Antarctica. We all know that
there is a better way to find a job. So check out vettery.com/sedaily and get a $300 sign-up

bonus if you accept a job through Vettery.

Vettery is changing the way people get hired and the way that people hire. So check
outvettery.com/sedaily and get a $300 at bonus if you accept a job through Vettery. That's V-E-

T-T-E-R-Y.com/sedaily.

Thank you to Vettery for being a sponsor of Software Engineering Daily.

[INTERVIEW CONTINUED]

[00:18:08] JM: You wrote this – Or I guess there was this article about project LightSpeed about
rewriting Facebook Messenger and it outlines several strategies that we’ll get into. Things like

© 2020 Software Engineering Daily 9

SED 1037 Transcript

using the mobile operating system more aggressively, using SQLite more aggressively, some

other strategies. But just from a high-level, were there any particular features that were causing
a lot of trouble or causing a large percentage of the bloat of the codebase? From a high-level,

things that users could understand or people who have used Messenger. What are the areas
that were causing the glut of the excess codebase?

[00:18:48] MA: Yeah, that's a great question. Again, that was part of the reason we decided to

go for a rewrite instead of a remodel, and basically it turned out it wasn't anyone thing. If we
take a quick step back and – Again, I used to jokingly say, “Look, Messenger is a two-screen

app. You have an inbox and you have a thread, a chat conversation. How bad could it be?”
Well, it turns out there's a lot more. There’s audio and video calls. There's group calls. There is

AR effects in group calls. There is the experience of – Again, we have an inbox unit for stories.
We have an inbox unit for who’s active. We have a friends tab that shows you who's online that

lets you consume stories. We have an entire visual production system for stories in Messenger.
We have photo editing tools built to their product so that it’s very quick for you to edit a photo

and send it. We have thread customization where you can change the color and the style of a
given thread. We have nicknames for participants in a thread. We have group conversations

where you can admin control. We have business features where you can interact with bots, or
businesses. The business can control the menus in these threads. I can keep going on and on

and on.

Every one of those are incredibly important aspects and we can’t just rip them out. That was our
conclusion. If we could just say, “Hey! Well, let’s just rip 80% of the features out. After all, we

can just do text and media messaging be done.” It turned out that is not the right answer for us.
We are a full-featured messaging and we want to stay as a full-featured messaging app. Then

became kind of attempting what feels counterintuitive. Well, you want to be full-featured, but you
want to be the smallest. How on earth would you do that? Our answer became, well, rewrite.

[00:20:20] JM: Okay. Well, let’s start to dive into this. The first strategy for improving the size

while maintaining the performance was to use the mobile operating system more aggressively. I
would assume that when you're writing an iOS app, you're already using the operating system –

[00:20:40] MA: Great question. Yup.

© 2020 Software Engineering Daily 10

SED 1037 Transcript

[00:20:41] JM: In a pretty aggressive fashion. What do you mean by being able to use the
operating system more aggressively?

[00:20:47] MA: Yeah. Actually, let me take a quick step out of even how – I think the way we

approached the entire project, some of us are kind of fans of cars, was the way we would
actually build a sports car or a racecar. Basically, kind of when you build a racecar, there's kind

of two things you would do. One is kind of there are set of rules you have to follow. We can
cheat and say, “Okay. Well, we’ll compromise safety or we’ll do something like that,” and then

you scrutinize everything. The rules for us were actually fairly clear. This has to be the full
Messenger. There was no compromise. We’re going to do the full messenger. It had to be full-

featured future product.

The scrutiny is that’s when we began asking ourselves questions, and one of the first question
is we looked at our existing UI code and we looked at existing entire codebase of Messenger

and we said, “Is there a better way to write this?” Messenger, like I mentioned, had grown
organically over four or five years, and at some point Messenger had acquired a lot of features

that Messenger ultimately took out.

You may or may not remember, we had like a games experience inside of Messenger that we
took out long before project LightSpeed. We had a rooms’ experience where we can try and do

bulletin board style, large-scale room kind of experiences that we had tried. We had built a lot of
infrastructure, user interface infrastructure, for those types of experiences. Those basically are

abstractions you start putting on top of the operating system. You've probably seen a lot of
frameworks.

For us, one of the first questions we asked was do we need to use frameworks or could be just

write it as plain – The question we asked ourselves, “Could we just write it the way the Apple
programmers guide say?” Write your view controller, write your view. Avoid writing custom views

if you don’t have custom draw. Going back to basics, that was number one.

Second is we started asking our assumptions. We had looked – Again, the operating systems
are not static things. They evolve every year. You probably see Apple and Google do very

© 2020 Software Engineering Daily 11

SED 1037 Transcript

substantial advances in their operating systems. Large applications like Messenger is very hard

for them to leverage the latest and greatest the operating system has to offer. Not necessarily
because of a platform reach, because Android addresses that with Android X, and iOS obviously

addressed that with very large update deployments of iOS.

We started asking ourselves, “You know, auto layout was not very performant on low-end
devices a few years back. Is it still that nonperformant?” It turns out the answer is no. It's

actually not bad. So we started using more and more of these things. So that became a new
principal, which is look at the latest and greatest that Apple and Google have to offer and find a

way to do it that reduces your need to incorporate a framework, to incorporate additional
libraries, to add levels of abstraction. Basically, the use the OS was a euphemism for, “Okay, we

know we need to write this code. Is there a better way to write it?” That's kind of how we
approached it.

Examples like I mentioned. We use Storyboards in cases we felt it's okay to use iOS

storyboards. If you're familiar with those, which is kind of a declarative UI where you can build
view controllers and views without having to do any code. We used constraint layout in some

cases. We used auto layout, auto guided layouts. In other cases, we use standard iOS view
controllers. Again, took a lot of the abstractions out and just tried to get closer to the OS and

remove any kind of abstraction between us and the OS.

[00:23:51] JM: Some parts of the rewrite were in C, right?

[00:23:54] MA:

[00:23:54] JM: Can you tell me about the parts which you rewrote in C?

[00:23:57] MA: Yes, and that was one of the big decisions before we even made the decision to
do project LightSpeed and kind of start with iOS. We definitely had our eyes set on the full user

base of Messenger, including Android. One of our realizations was – Which is kind of again, it
goes back to looking at our existing codebase. Messenger is a database app. It’s very

database-centric. It's not that hard to kind of imagine you have tables for your threads and your

© 2020 Software Engineering Daily 12

SED 1037 Transcript

messages and your participants and your attachments inside a message and your contents.

Those five tables are kind of the heart and soul of an app like Messenger.

When we looked at those, we started looking at the logic that you run when you do things.
When you send a message, what happens? Well, you put it in a database because you want to

be able to run the UI off the database. You schedule something to try and send the message.
Ultimately, it’s going to go to the server. The server may actually produce a more complete

version of the message. It may resolve it to do integrity checks and things like that for it.

When you send a message, the thread, the conversation you’re in, you probably want to market
is read clearly. You probably want to change this timestamp. We had all this database-y logic.

When we started looking at our existing codebases, we’re where finding a lot of that logic is
sitting in a platform-dependent way. So that would be in Objective-C in iOS, and in Java on

Android. The more we looked at it we said, “Wait. This is all basically very general-purpose
logic. It does not have UI views of UI view controllers on iOS. It does not have views and

fragments and activities on Android. It's basically pure data manipulation.”

Our insight was what if we actually took that and we made the core part of the schema, the
business logic and the sink logic of everything in Messenger be portable and cross-platform?

That was the first question. We decided the answer is after studying enough of our codebases,
the answer is yes, and then we asked ourselves, “What's the best way to do cross-platform?”

You can probably tell we are friends of SQLite, and SQLite is a very, very popular, very

successful cross-platform library. It’s one of the most highly deployed libraries in the world. It is
in portable C code. We decided to kind of follow the footsteps of SQLite and we had one more

reason for why we chose C on iOS that we thought would actually give us an advantage. I'm
happy to kind of get into that. Had to do with core foundation if you’re curious.

[00:26:18] JM: Actually, you mentioned that this idea that it's easy to think of Messenger as a

database- centric app. I don't know if that's actually intuitive. I mean, for me, when I was reading
about that, that was actually a little bit confusing to me. So when I think of Messenger, I think of

like I load this thing and maybe it fetches some data from the server, and then it loads things
into memory. It loads lists of –

© 2020 Software Engineering Daily 13

SED 1037 Transcript

[00:26:42] MA: Yup, conversations. Yeah.

[00:26:45] MA: Like in-memory representations of what my friend list is, the conversations I
have open. I don't imagine an embedded database sitting on my phone that is representing the

objects of my Messenger app. I literally imagine just in-memory object representations.

[00:27:04] MA: Yeah, do a fetch from a server and then render a thread list. That is an
awesome question. Yeah.

[00:27:07] JM: Yeah. That's what I imagine.

[00:27:10] MA: That is an awesome question, Jeffrey. Yeah, here's the deal with messaging

though. Messaging is a transactional experience. People have seconds, right? You want to
launch the app and you want to be able to – Imagine, again, you're sitting at your desk and you

running late. You're getting up. You grab the phone. You unlock the phone. You launch
Messenger. You want to type a message. You want to send it. You literally have seconds.

If you have to wait on network conditions to even get the conversationalist, to even resolve your

contacts, to even do anything. One of the key attributes of messaging very different than say a
feed product like Instagram or Facebook is that you actually truly try and avoid getting off the

network. You can be dealing with – You don't want the user to wait. They don't have time to wait.
You can await downloading a video on your feed. You know you're downloading a video from

the Internet. There's nothing you would not want the phone in the background to go download
that video for you.

One of the unique parts of messaging in general is very transactional, very high-volume, a very

large number of small interactions. This is by the way not new. I would say my belief is actually
almost every messaging product starts with an online experience. They just fetch messages

from the server and they let you reply and they quickly – By the way, email is not the different as
well. It doesn't take you long to realize, “No. No. No. No. One, I'm spending time re-fetching

data that I can just keep. It doesn't change that much.” So you start keeping the data. Second,
you say, “Wait. Do I really want to block the user as they're sending multiple messages while I

© 2020 Software Engineering Daily 14

SED 1037 Transcript

try and communicate over the network?” No. The answer is I want to defer. I want to batch

things. I want to differ them. Third, the data that you actually are trying to render in the user
interface over time grows and becomes more complex. You're not just trying to get a

conversations list. You’re also trying to get a list above it of users and who’s active. You have
nicknames. You have themes. You have profile pictures. You have group profile pictures.

You basically start moving gradually less from an online to actually – I don't want to use the

word offline, but a more device-centric experience that only goes on the network to do the things
it absolutely has to, which is deliver a message or give you a new message. That's the key of

how a lot of messaging and actually email applications try and achieve speed. Unless they are
HTML-based, which is that's a different kind of category of experiences.

Again, if you're familiar with something like Microsoft Outlook and Microsoft Exchange, you

could almost raise that exact history back to almost those two products as well. I happen to
have worked on both a lot many years ago. History kind of keeps repeating itself as well. You

start with an online thing and then you realize, “Wait, the client is being very sensitive to every
network hiccup, every server load hiccup, in cases where it doesn't need to. It's doing resolving

things it should've already had. Why not keep them? Why not use them?” That's what leads you
down the database path.

[00:29:54] JM: I guess it's worth talking about SQLite here. SQLite is a popular embedded

database that people use for mobile applications in many cases. What does it mean to – I think
we’ve done an entire show on SQLite. But for people who haven’t listened to that show, why is

SQLite useful for a mobile application like Messenger? I mean, why do we need a specific type
of database like SQLite? Why not use – Or can you use Postgres, or Mongo on your client?

[00:30:24] MA: Oh, that’s an awesome question as well. SQLite, again, it has a light term. It

was built to be an embedded database. It was actually built exactly for that purpose. Postgres or
SQLServer or MySQL or Mongo or any of those products, those are database servers. They are

built from ground-up to support thousands, sometimes hundreds of thousands of concurrent
users. The manage threads. They run their own memory pools. They manage connections and

concurrency. They do all of these things. That is an enormous overhead for a mobile device.

© 2020 Software Engineering Daily 15

SED 1037 Transcript

Basically, that database is fundamentally single-user. It exists for one app. One user on that app

using that experience. SQLite is unique and maybe you could say both fortunate. Again, both
lucky and good, and that it was built for that purpose. It is small. It is lightweight. It is embedded.

It does not take over your threads, your process, your memory. It lets you manage all of these
things. It’s there to give you access to persistent data and for you to be transactionally so that

you have kind of correctness and you can do multiple operations on one transaction and they're
all consistent. It also have a rich SQL query language where you can do these complex queries

that you need to do to construct your user interface for your messages or your conversations.

It’s very well-built for this purpose. It’s also C code and very portable library. It’s already widely
deployed in iOS. It’s widely deployed in Android. It is easy to deploy to the Mac. Actually, it’s

pretty deployed into Mac. It’s easy to deploy to Windows. We also have messaging and
messaging-related experiences in some of our other devices like Oculus headsets or portal

videoconferencing devices. SQLite is a great asset in that regard. I would be surprised if most
messaging apps don't use SQLite. We just chose to use it maybe a little bit more methodically is

the best way I can describe that.

[00:32:13] JM: Does SQLite sit in memory or is it on disk? Does it just have just have different
caching layers, like many database systems?

[00:32:22] MA: Yeah. SQLite, basically, the way you want to think of it is a set of C APIs. Use

them to kind of open a database file and then you can execute SQL statements against that file
and you can insert update delete or select from that file. It does have a built-in caching layer and

it’s actually quite good and it’s smart about figuring out. Obviously, it has an index system that
lets you create indices and figure out how you can fetch data very quickly. But it also has

temporary tables and memory databases, and we actually do take advantage of temporary
tables for things like typing indicators or online status, state that does not need to survive the

application restart. Again, we use tables for everything. It’s kind of our dominant data structure.
SQLite is a very good fit for us. Again, it allowed us to avoid building dedicated data systems for

every one of these experiences.

[00:33:10] JM: Did you build some kind of ORM system for accessing the database from the
messenger client?

© 2020 Software Engineering Daily 16

SED 1037 Transcript

[00:33:16] MA: That’s another good question. ORM is an object relational mapping system.
SQLite, like most modern databases, is a relational database. It has tables and joins. It uses

relational algebra at its heart for you to express, and it’s dominated more by queries. Most
teams indeed end of building a mapping layer between the relational system and some object

hierarchy that they can then consume in Objective-C or Java.

We actually decided not to do that, Jeffrey. We decided to actually embrace the fact that it’s
relational and instead just make it easier for you in Objective-C or Java to consume those

results sets and for you to issue these queries including these complex queries. We ended up
producing kind of a stored procedure language on top of SQLite that lets you express these

complex SQL-related business logic and made it easy for you to call that as an API, and that
API returns a result set, and the results, basically think of it as a table, a memory table instead

of an array of objects. The memory table has clean APIs both on the Java site on Android and
the objective side in iOS for you to be able to access columns. We embrace the relationalness

of SQLite in our product and we expose that all the way up, and actually avoided us creating
more mapping layers. Again, more frameworks and more abstractions.

[00:34:32] JM: Just to spend little more time on the database side of things, the embedded

database center things, tell me little bit about the schema. What are you modeling in the SQLite
database?

[00:34:42] MA: Oh, that’s an awesome question. I mean, again, this a topic I could probably –

Let me say this. Messenger, like I said, is deceptively complex. We literally have hundreds of
tables. That's hard to imagine in a product like this, but mostly because we decided to model the

entire application as relational. We have what we call the core tables. Those are the things you
would expect. I have my threads, which are my conversations. I have my messages, which is

text messages. I have attachments, which is the media that kind of attaches to these bubbles as
how you see a photo or a video. I have contacts, as you can imagine, and a conversation may

have multiple participants. Maybe be one-on-one or a group and you have – So that's kind of
the foundation. We call those the core tables.

© 2020 Software Engineering Daily 17

SED 1037 Transcript

Then we have a bunch of system tables. These are things that we used to be able to sink data.

How far are you and your conversationalist? What new messages we need to fetch? Any
mutation you do? If you change your profile picture on the device, how do we upload that profile

picture up to the cloud? That sort of thing. We have kind of sink and system supporting tables.

The vast majority of the additional tables are all related to the features. Like I mentioned, we
may have tables to track in-memory as you're typing in a thread to show you the typing

indicators. We may have tables that show you the online status. The little green dot you see in
Messenger against any contact anywhere you see them. You can now imagine the join that we’d

do between contacts and presence to show you that green dot everywhere we show your profile
picture. Again, when you render names in a thread, we have to do a join because there may be

nicknames and you can actually give people nicknames in a thread. We have nicknamed tables.

When we load the thread, we have to load the participant list. We have to load any thread
customization you might've done. You might have picked a custom emoji for sending in a thread

and so on and so on, the last set of stickers you used, your favorite stickers. The actual sticker
packs that you have subscribed to. Metadata about sticker packs in the sticker store. I can keep

going on and on. All of these become tables. For us, they all get integrated into a – Like I said,
it's a scheme that we have divided into what we call regions, and we have a core tables region.

We have a system reason. We have these regions that are partitioned across the feature keeps.

[00:36:49] JM: When you load something like a friend list or an active conversation or
something like that, I assume you put some kind of in-memory representation into memory, and

then an update to that in-memory representation, there must be some transaction that occurs to
propagate that to the database layer, right?

[00:37:11] MA: Yes. It’s actually an awesome – Again, another meta-design question. We

decided to build LightSpeed from the ground-up with what you would consider a reactive design
pattern.

[00:37:20] JM: Interesting.

© 2020 Software Engineering Daily 18

SED 1037 Transcript

[00:37:21] MA: In our case, what we mean reactive design pattern is you don't do two-way data

binding. You don't mutate data. What you do is basically you read data. You have an old
representation of data. You get an indication that data has changed somehow. In our case,

again, it can change in a lot of different ways. We’ll talk about that in a minute. Then you get the
new version. You diff them, and then you produce a diff and you render the UI changes based

on the diff between old data and new data.

In our world, the way mutation happens is I don't want to call it out-of-band, but we almost want
to treat it out-of-band. You mutate by calling functions, by calling store procedures that mutate

the data, but you're not the only one mutating the data. Remember, the server could be coming
in and mutating data for you. That's how you receive a new message. You didn't do anything on

the client. The server deployed data to the client, ran a particular store procedure, which
inserted that message into your messages table. The user interface gets the notification.

There’s new data. It gets the new data diffs it against the old data and renders an up-to-date
message list. But that's no different than if you were in the composer in that very same thread

and you had send. It was you calling that sort of procedure that mutated the data, but you didn’t
know. Anything could've called that store procedure.

We’re very big on the reactive design pattern. There's many other terms word. We call it kind of

a of the database-centric maybe view of programming or a database-first design pattern or a
single source of truth. You hear a lot about kind of the single source of truth and these reactive

design patterns especially with the emergence of even more modern, not just React and React
Native, but also SwiftUI and Combine on the iOS side, and Jetpack on the Android side. It's

actually not that different than those worlds.

[00:38:58] JM: Totally. The single source of truth in this case is the backend database.

[00:39:03] MA: Ah! Actually, the single source of truth as far as the user interface is concerned
is the client database.

[00:39:08] JM: Got it. The SQLite database.

© 2020 Software Engineering Daily 19

SED 1037 Transcript

[00:39:10] MA: Yeah, the SQLite database. The reason for that is a lot of the things –

Remember, when I mentioned earlier, we’re trying to not get on the network all the time. We do
a lot of things optimistically in the local database and then we sync those with the server. Most

of the time, the server comes back and says, “Okay. Yes, this is good.” What you had done
optimistically work. There's no need to make changes.

Sometimes the server may actually do things. Again, sometimes a server may expand it. For

example, the delivery receipt, the little blue check that you see or the small profile picture that
you see that someone read your message, that’s the server mutating the status on your

message. It was something you optimistically sent. It went to the server. As far as these are
interfaces are concerned, this message is great. The server did not reject it. So there's nothing

new to do, but eventually a server comes back and says, “Hey, I need to mutate this for you
because the status has changed. It was delivered. It was read.” Now you do the status update

on.

[SPONSOR MESSAGE]

[00:40:10] JM: Over the last few months, I've started hearing about Retool. Every business
needs internal tools, but if we’re being honest, I don't know of many engineers who really enjoy

building internal tools. It can be hard to get engineering resources to build back-office
applications and it’s definitely hard to get engineers excited about maintaining those back-office

applications. Companies like a Doordash, and Brex, and Amazon use Retool to build custom
internal tools faster.

The idea is that internal tools mostly look the same. They're made out of tables, and dropdowns,

and buttons, and text inputs. Retool gives you a drag-and-drop interface so engineers can build
these internal UIs in hours, not days, and they can spend more time building features that

customers will see. Retool connects to any database and API. For example, if you are pulling
data from Postgres, you just write a SQL query. You drag a table on to the canvas.

If you want to try out Retool, you can go to retool.com/sedaily. That's R-E-T-O-O-L.com/sedaily,

and you can even host Retool on-premise if you want to keep it ultra-secure. I've heard a lot of
good things about Retool from engineers who I respect. So check it out at retool.com/sedaily.

© 2020 Software Engineering Daily 20

SED 1037 Transcript

[INTERVIEW CONTINUED]

[00:41:46] JM: I’ve done a lot of shows about React, and tracing the origins of this one-way
data binding in and why this emerged in popularity within Facebook I think is an interesting

story. From what I can tell, it was necessitated by the reality of Facebook being this highly-
transactional multiuser application where you have all these little changes going on across the

application at a single time, because like you think about why did React come out of Facebook
as supposed to Amazon or Google. Well, I mean Amazon and Google, there's a lot of data.

There's a lot of stuff going on, but you think about the biggest parts of the application. They
kindly get updated in batch. Like you have a big search index that gets updated every – In

epochs, then the search index is updated. Then you have the same thing with Amazon, like the
product catalog gets updated every night. But with Facebook, it’s this totally user- driven thing

where you can't really predict how the changes are going to occur. So you need some scalable
way of really having a nice update system, and that seems to be why it was like the necessity of

having something that would do a better job than two-way data binding that led to just the
dominance of that reactive pattern throughout Facebook.

[00:43:10] MA: You said this quite a bit better than I would available to. That is spot-on. Any

environment where you have a large amount of change that can occur to the data, keeping that
in-sync with the user interface becomes an almost intractable problem. Like I mentioned, mobile

apps started being very simple, but it's not surprising. We have grown in complexity. That's why
you see iOS embracing Combine and embracing SwiftUI, which is a purely reactive design

pattern, same on the Jetpack Android side.

I think that inside that Facebook had on the server initially in our HTML world, in on our web
world, which was dominated by the enormous amount of data change in UI change and

coordinating all of that became impossible until the inside was, “No. If you go to a single source
of truth, basically you decouple the read and the write path. You let the write mutate data. Give

you a signal the data has changed, then the UI layer can then do the proper read and then a diff
model, which also produces higher-quality user experiences. You can now animate the

changes. What's changed between the time I was looking at this feed and have the fee changed
or somebody – How many people like this story or the comments that came in on the post?” I

© 2020 Software Engineering Daily 21

SED 1037 Transcript

think that is the reality not just – It used to be the reality of the server and the web. Now it’s

becoming the reality of mobile apps because mobile apps are becoming quite a bit more
complex, which is not surprising. That's just the nature of software.

[00:44:31] JM: Did this rewrite entirely encompass the client-side, the iOS side of things or was

there significant work done on the server side as well?

[00:44:40] MA: That's a great question. One of the reasons – The answer is yes on the server
as well. What we had done with the server, one of things, we had some constraints. So one of

the constraints was we can’t change the actual backend that stores and delivers messages.
One that’s very highly deployed, that is probably the largest most deployed messaging

environment in the world because it’s also not just using Facebook Messenger. It’s using the
little chat bubbles when you chat with someone on the web and Facebook. It is used FBLite

products. It is used in our Android product, which was not yet LightSpeed-based.

We knew we could not change the actual messenger infrastructure. But one of our design goals
was this single source of truth and having a single uniform database-centric view of the world

required us to build a new unique asset on the server. At the last FA, two of my colleagues,
Joshua Evanson and Jeremy Fein, talked about the details of that broker. One way to kind of

quickly describe it, the existing product had somewhere between 20 and 30. We don't really
know the exact – I don't know the exact number, of independent systems. Some of them were

dealing with messaging related things. The stuff you would expect, sending messages, receiving
messages. But the contact system was a very separate sync stream with a very separate

schema, with a very different system that relates with Facebook user accounts, Facebook users’
integrity, who’s allowed to message whom, etc. Stories were coming from a different backend.

Presence was coming from a different backend. Typing indicators was coming from a different
backend.

What we decided in project LightSpeed is to build a single uniform client way of doing that. The

only way we could do that is to build kind of a counterpart in the server. So we built a technology
on the server we called the LightSpeed Broker, and what it is, it's kind of the brother or sister of

LightSpeed on the server. It’s job, if you’re actually familiar with Django 4 design patterns,
probably it’s kind of an aggregator adapter design pattern. It basically takes one uniform sync

© 2020 Software Engineering Daily 22

SED 1037 Transcript

approach and data approach and the federated back out to the existing system. We are not in a

position to go redo all of these systems.

The broker was an absolute key part of what allowed us to keep the LightSpeed code small
because we don't have all these independent sync systems. We don’t have independent

threads each one going on the network. We don’t have network streams kind of fighting with
each other going on top of each other or around each other. We have a more – Again, we built a

freeway basically between the client and the server and we regulated the traffic between the
clients and the server and the old product was probably closer to an organically developed cities

where people can kind of find shortcuts and go down the streets and find another part of the city
and eventually you end up with kind of unmanageable traffic problems as a result. So that's

what we did.

[00:47:18] JM: There was a platform that you built called MSYS.

[00:47:23] MA: Yes, MSYS.

[00:47:23] JM: To handle much of the logic for Messenger. Can you talk about what MSYS is?

[00:47:28] MA: Yeah, that is the C codebased implementation of Messenger. Like I mentioned,
when we had looked at it, we realized we were doing a lot of business logic, a lot of schema and

a lot of sync logic in the UI layer. We were doing that in Java and Objective-C, and our intuition
was – Again, I think sometimes teams go very extreme about cross-platform one way or the

other. Sometimes teams try and do the entire app that’s cross-platform, and that's very difficult
to do especially given how rich modern UI platforms are, like UIKit, WwiftUI, Android Jetpack.

On the other hand, then people shift to the opposite, “Well, let me just do everything the Java

way. Let me do everything the Objective-C way,” and we felt that there is a balance in between.
We felt that the core schema, the core business logic, the thing that says when I send a

message [inaudible 00:48:11] thread is read. That did not need to be Java. That did not need to
be Objective-C. There's nothing UI about it. There's nothing iOS-y or Android-y about that idea.

It's a database idea.

© 2020 Software Engineering Daily 23

SED 1037 Transcript

So we took all of that. We took authentication. We took the core schema. We took all the core

business logic. We took that universal sync system that I just talked about earlier and we made
that into a single subsystem. We call that MSYS. It’s unclear whether M is messaging or

Messenger, but you can take it either way. It's probably very Messenger-centric, and that is the
asset that we believe is going to be the cross-platform asset that will allow us to take a lot of the

LightSpeed experience not just a iOS, but to Android and the rest of kind of the family of
applications mantra.

[00:48:53] JM: I guess it’s worth talking a little bit more about the long-term implications of this

project. This was completely focused on iOS, but I imagine that there are other principles you
could take from this rewrite and go and apply to Android, the Android Messenger application or

the desktop web Messenger application, or like you said, Instagram, or WhatsApp or I don’t
know if there's some kind of messaging system in Oculus, but messaging is so important to the

whole lifeblood of Facebook. What are some of the areas of this rewrite that you can reuse in
future messaging rewrites or greenfield projects, in one word, MSYS. That was our answer.

Actually, one thing I should mention. When we had started, the very, very beginning bootstrap

was 100% in Objective-C, and then we actually paused for quite a while we decided it was
because – Again, we have an enormous number of users on Android and we have – Again,

Mark had talked last year, I believe, at F8 about kind of this messaging-centric evolution of the
social network. I think it became clear to all of us how central messaging is to the future of all

social networking.

We paused and we actually took that Objective-C code and we redid it all at C code and we
bootstrapped it with JNI on Android early throughout the development cycle. We always had

Android in mind when we built MSYS. We worked with a partner team. We have a great product
in Android called MessengerLite for Android, which is a very small and very focused version. It’s

kind of an amazingly executed piece of technology not as feature-rich as the full Messenger
product.

We partnered with that team to kind of keep us honest and to see if MSYS could be something

that even in that extreme case, which is something that is very focused only on messaging, only
on very low-end devices would be able to use it. We partnered with that team and they kept us

© 2020 Software Engineering Daily 24

SED 1037 Transcript

honest throughout the whole cycle. We’re fairly confident that MSYS really is our systemic

approach for how we bring messages outside of iOS, Messenger iOS to Messenger Android, to
Portal, to Oculus. I believe we have actually launched a desktop product. We’ve talked about a

desktop product, which is a rich, complete application. That one actually – When it launches, I
don't actually know if it's launched or not. When it launches, it also has MSYS inside as well.

That one is on the Mac and Windows and does not use the web. It uses Electron for UI, but it
has a full sync MSYS-based. So it works offline. It works kind of as a rich desktop app.

[00:51:27] JM: That MSYS platform, I'm assuming that's tightly coupled to Facebook

infrastructure. This is probably not going to be something that could be open-sourced in the
future, right?

[00:51:36] MA: Not that part of it, because – Yeah, I think it’s highly dependent on things like

Facebook authentication and the representation of users at Facebook and the Facebook
integrity systems that tell you whether someone can – It's definitely kind of I would say it's very

focused on that. What we have done instead is there are parts of the way we built MSYS that as
we look back, we feel like – I think our approach at Facebook is anything that we think – It’s not

even a propriety issues. It’s just a practicality issue. Anything that is highly bound to data
structures, the presence of services that would take somebody, it’d be impossible for someone

to implement. We tend to keep those in-house. We don't bother. Anything that we feel can
generalize, those are the ones we start looking at and saying, “Is there value in open sourcing

this?” That's kind of the process that we’re doing right now, is kind of doing that triage of saying,
“We believe the answer by the way is yes. There are things we did that don't really have a

unique tie-in to Facebook infrastructure that would be valuable for other people just like they
were value for us, and we’re happy to share those.”

[00:52:27] JM: Cool. I’d like to know a little bit about the management of this project. How many

people were working on project LightSpeed?

[00:52:35] MA: Project LightSpeed literally started – I mean, the inception was actually really
two engineers and one of the VPs of engineering on Messenger who kind of caught wind of that

and started going that route. I would say it went from two quickly to about 10, then to 20, and it
was probably at 20 I would say for about that year when we were kind of – Before we decided

© 2020 Software Engineering Daily 25

SED 1037 Transcript

we’re just going to do the full rewrite. Then I would say it went well over 100 engineers probably

in the scale of 120, 130 engineers just on the iOS side. Remember, we were doing parallel work
in other areas to make sure we’re still engaging on Android. We’re still doing – It’s a very large

and complex project.

[00:53:10] JM: 120 engineers that were working on the Messenger rewrite.

[00:53:15] MA: Yes, at some point.

[00:53:16] JM: Incredible.

[00:53:16] MA: Again, it’s not – Yeah. If you can imagine, again, it goes back to, “Well, we
needed the presence experience. We need the bots experiences. We needed the business

experience. We needed the business search experience. We need, again, the stories
experience. We need the visual composition experience.

One of the challenges of Messenger, if you are on an iPhone, you don't use iMessage to

manage your account, right? One of the things we tend to do at Facebook as we allow you from
any app to do full account management. You can actually sign up. You can disable your – You

can do all of these things on your account even in the app itself.

We take on things that a lot of – Again, in Messenger, we include audio and video calling
integrated into the experience and not in a separate app that we can build and deploy

independently. You can say that Messenger is not an app. It’s actually kind of a platform of a
number of communications, experiences between people, and that requires a lot of people.

[00:54:09] JM: Understood. If you were going to start over from scratch today, how would you

have done this project differently?

[00:54:18] MA: Honestly, I would say the only thing – Again, even now, it might still be too early.
We would take a much closer look at Combine and SwiftUI on iOS. An Android, again, I would

definitely take a look at Jetpack. Again, we made the assumption two years ago, obviously

© 2020 Software Engineering Daily 26

SED 1037 Transcript

SwiftUI was nowhere around and Combine in these types of things. I would say that probably

would be the top thing.

MSYS itself, maybe one of the differences – Again, there are some internal mechanics. For
example, we got the teams to build these sort of procedures for their logic and we kind of made

them more embedded on the MSYS side instead on the feature side. We’re doing some
refactoring and cleanup of things like that. Those are minor things, but I would say the user

interface layer – Again, going back to our principles of use the operating system. I think it's time
to start for a lot of teams actually start asking fresh questions. We might be a little too early still,

but there is the rise of the new user experience and data architecture stacks both on iOS and
Android, and I think they’re definitely worthy of the teams paying very close attention to them.

[00:55:16] JM: Given your deep knowledge from this project, and I'm sure you’ve done some

other work before in the same area. Do you have an oblique or an optimistic perspective when it
comes to cross-platform mobile development?

[00:55:32] MA: I think I have a cautious. Again, personally, and this is definitely necessarily a

Facebook representation, but my own opinion, is that I think the extremes don't work if you try
make your entire app cross-platform, including the UI. Actually, I have experience in that as well.

It’s just a lot more difficult. There’s a lot more, and tracking the advances that Apple and Google
are going to make are going to drive you crazy. They’re advancing these operating systems at

the slowest pace once year. It’s actually really more than once a year. They have hundreds and
sometimes thousands of engineers evolving these platforms. They’re building tools to support

them. Be careful about cross-platform UI. But the opposite is also true. Ask yourself, again, is
this piece of code you’re writing, what is iOS about? What is iOS about updating a table and

SQLite to say that I need to mark a thread is read? Why does that have to be platform-specific?

I think I'm still – Again, in hindsight looking back, I think it was one of the principles we used that
worked well for us. We empowered the team to use latest and greatest. One of the jokes on the

team was don't be embarrassed to stack overflow how you do something on iOS, because
we’re actually just an iOS app for the UI layer. I think that is I would say caution and balance is

kind of warranted in this case. Be careful about full cross-platform, but also be equally careful

© 2020 Software Engineering Daily 27

SED 1037 Transcript

about, “Well, then just let me do the whole thing in Java or let me the whole thing in Objective-

C.”

Now, for a very small app, I would absolutely do it that way. But if you're at the scale of a
Facebook or a Google or an Apple – Apple may not care about the Android’s side. But

Facebook or Google at least or a are Microsoft and you're working on these large cross-platform
efforts. I think the balance is incredibly important there. Having clarity on the principles you used

to decide, “Okay, applying a razor that the team that every developer can use and it’s crystal
clear. Okay, this code I'm writing. Okay, is has UI view. Boom! Objective-C. No question.” All it is

doing is manipulating database. Boom! If I’m doing SQL, I’m not doing Objective-C.” That kind
of thing would really help.

[00:57:26] JM: I know we’re up against time, but just because I’d be remised if I didn’t asked

this. There was not use of React Native in this rewrite?

[00:57:33] MA: No. There was no React Native. there is no cross-platform user interface in
project LightSpeed. The entire UI layer is UIKit Objective-C based, and everything portable was

done in C and SQLite. By the way, the existing Messenger did not use React Native either. I
think there was somebody online was saying we have been in React Native. We actually had

never used it. We had some small features at some point the use React Native. I don't honestly
remember what the feature was. Then that feature was that long before project LightSpeed. The

feature was deprecated. So our need for the framework was deprecated, but Messenger, the
existing Messenger was a very UIKit Objective-C app, and the current Messenger Android is

very activity fragment Java app. Very kind of platform-specific app as well.

[00:58:18] JM: Got it. I guess just to close off. The modus operandi for not using React Native is
just because the performance wasn't good enough?

[00:58:25] MA: It’s also to leverage the latest and greatest advances in iOS. We want to be use

all the latest gesture recognizers, iOS animation. Like I mentioned, storyboards. We want to be
able to do, again, layout inside of Xcode interface builder where we can – When we switched to

SwiftUI, we want to be able to use the canvas and previews and all of these things. Again, it’s
that principle of – It’s harder for – Again, I think cross-platform user interfaces are incredibly

© 2020 Software Engineering Daily 28

SED 1037 Transcript

useful for certain classes of applications. Messaging in particular is kind of a flagship. It’s utilities

and electricity of the modern mobile era we’re in. These may not be the best applications to try
and do cross-platform UI in. There may be a lot of other applications where it makes a ton of

sense to do this in.

[00:59:08] JM: Mohsen, thank you so much for coming on the show. It’s been great talking to
you.

[00:59:11] MA: Same here, Jeffrey. It’s really my pleasure. Thank you so much.

[END OF INTERVIEW]

[00:59:22] JM: If you are selling enterprise software, you want to be able to deliver that

software to every kind of customer. Some enterprises are hosted on-prem. Some enterprises
are on AWS. There might be a different cloud provider they use entirely, and you want to be able

to deliver to all of these kinds of enterprises.

Gravity is a product for delivering software to any of these kinds of potential environments or
data centers that your customers might want to run applications in. You can think of Gravity as

something that you use to copy-paste entire production environments across clouds and data
centers. It puts a bubble of consistency around your applications so that you can write it once

and deploy it anywhere. Gravity is open source so you can look into the code and understand
how it works.

Gravity is trusted by leading companies, including MuleSoft, Splunk and Anaconda. You can go

to gravitational.com/sedaily to try Gravity Enterprise free for 60 days. That’s gravitational.com/
sedaily to find out how applications can run the way that your customers expect in their

preferred data center. That’s gravitational.com/sedaily.

Thanks to the team behind Gravity, the company Gravitational, for being a sponsor of Software
Engineering Daily.

[END]

© 2020 Software Engineering Daily 29

