
SED 1017 Transcript

EPISODE 1017

[INTRODUCTION]

[0:00:00.3] JM: React JS began to standardize front-end web development around 2015. The

core ideas around one-way data binding, JSX and components caused many developers to
embrace React with open arms. There's been a large number of educators that have emerged

to help train developers wanting to learn React.

A new developer learning React has numerous questions around frameworks, state
management, rendering and other best practices. In today's episode, those questions are

answered by Ryan Florence, a Co-Founder of React Training. React Training is a company
devoted to helping developers learn React and React training trains large companies, like

Google and Netflix how to use React.

Ryan has a strong understanding of how to help developers be productive with React. In today's
episode, he explains some of the fundamentals that commonly confuse new students of React.

Ryan is also speaking at Reactathon, a San Francisco JavaScript conference taking place
March 30th and 31st in San Francisco. This week, we'll be interviewing speakers from

Reactathon. If you're interested in JavaScript and the React ecosystem, then stay tuned. If you
hear something you like, you can check out the Reactathon conference in person.

[SPONSOR MESSAGE]

[0:01:30.1] JM: When I'm building a new product, G2i is the company that I call on to help me

find a developer who can build the first version of my product. G2i is a hiring platform run by
engineers that matches you with React, React Native, GraphQL and mobile engineers who you

can trust.

Whether you are a new company building your first product like me, or an established company
that wants additional engineering help, G2i has the talent that you need to accomplish your

goals. Go to softwareengineeringdaily.com/g2i to learn more about what G2i has to offer.

© 2020 Software Engineering Daily 1

SED 1017 Transcript

We've also done several shows with the people who run G2i, Gabe Greenberg and the rest of

his team. These are engineers who know about the React ecosystem, about the mobile
ecosystem, about GraphQL, React Native. They know their stuff and they run a great

organization.

In my personal experience, G2i has linked me up with experienced engineers that can fit my
budget and the G2i staff are friendly and easy to work with. They know how product

development works. They can help you find the perfect engineer for your stack and you can go
to softwareengineeringdaily.com/g2i to learn more about G2i. Thank you to G2i for being a great

supporter of Software Engineering Daily, both as listeners and also as people who have
contributed code that have helped me out in my projects.

If you want to get some additional help for your engineering projects, go to

softwareengineeringdaily.com/g2i.

[INTERVIEW]

[0:03:20.0] JM: Ryan Florence, welcome to Software Engineering Daily.

[0:03:22.4] RF: Hey, thanks for having me.

[0:03:24.0] JM: You've been part of the React community since the early days. How has React
application development changed since the earliest days of the project?

[0:03:33.6] RF: Yeah, I've been – it was open source seven years ago and I've been using it

about six years, which is unheard of in the JavaScript world. I've been blown away at how long it
survived. Honestly, React itself – there's two Reacts, right? There's React the library and then

there's all caps REACT, the whole community and ecosystem around it.

React itself over the years, I haven't really seen it change much. There were small little tweaks
in the way you would define components, but it went a good four or five years without really

changing until they released Hooks last year. That was the first real change that has happened
in React application development.

© 2020 Software Engineering Daily 2

SED 1017 Transcript

To me, it got more in-line with the philosophy, or the idea behind React. The community itself,
like everything around it, I think we've seen a few phases. There's the early adopter phase and

then we – my business partner, Michael Jackson, we built a thing called React Router. That
helped expand the use of React, because people now knew how to – React really is just little

components, little parts of the page that you can build. You can control the whole page, or a
small piece of the page, but people didn't really know how to put the whole thing together into a

full application and that's where React Router helped adoption a bit there with React as well.

Then Redux. We got the Redux phase. Dan Abramov is a brilliant developer and gave an
amazing talk showing off some stuff that he wanted to do. He want to do time travel debugging

and he came up with this thing called Redux. Super cool library. We're all really impressed by it.
People started using Redux a lot.

That phase is a little bit weird for me, because a lot of what makes React great got pushed to

the sidelines and people don't even know that you could manage state in React. They thought
that you had to bring in Redux to do it. I think we lost some innovation that we may have had

sooner. Then, I think we're in a new phase now with Hooks and we have way more ability to
compose behavior and our UI. There's my React over the years in a nutshell.

[0:05:51.7] JM: Let's talk about React pre-Hooks for a little bit. Before there were Hooks, what

was the distinction between using a state manager, like Redux versus just managing your state
with the primitives that are available in React without Redux?

[0:06:13.0] RF: Pre-Hooks. That's what –

[0:06:15.4] JM: Yeah, yeah.

[0:06:16.8] RF: Before we had Hooks.

[0:06:18.0] JM: Before we talk about Hooks. Right.

© 2020 Software Engineering Daily 3

SED 1017 Transcript

[0:06:20.0] RF: Yeah. State management is a huge term. You have to manage state for a little

counter. Click a button and the count goes up. Then you also have to manage state from maybe
you're caching your JSON responses from a server that you're sharing across your whole UI.

State management is a huge topic, I guess.

Redux really shined, especially pre-Hooks, for the caching data from your server use case. That
may not be why it was designed, but that is definitely how it got used is a screen shows up on

the page, you make a request, so you dispatch in action. “Hey, we just mounted this screen.”
Then you have maybe some middleware, or something that goes and fetches data from the

server and then puts that data into the Redux store, which is you can just think of it as a cache.
You can just think about it as a variable that you're putting things in. Then you could access that

that data anywhere.

Maybe you fetched the user, or maybe you fetch a set of invoices and maybe you got two or
three or 10 screens that need to list those invoices. You've got this client-side cache of that

data. Now you could use Redux for more things than that. That's how I've seen people use it for
the most part.

Before Hooks, it was I think probably the best way to manage that data. I call that explicit data.

It's data that you need to see, you need to know about, versus implicit data, which is data that
you don't care about state. You don't care about as an app, like is a drop-down menu open? If

I've got a drop-down menu component, I don't care if it's open or not. That thing manages state
on its own. Redux wasn't really useful for that thing, but very useful for the bigger application

level state.

[0:08:08.5] JM: Were there any patterns around using Redux that caused applications to be
built in a way that that wasn't architected maybe as soundly as it could have been architected in

the absence of Redux? Were there certain anti-patterns around using Redux, where people
leaned on a client-side cache in a way that was maybe not ideal?

[0:08:37.5] RF: Every app is different. For me, one of my frustrations, regrets, I don't know the

word is, with Redux was we pushed away encapsulation; the idea that you could have a section
of your application that could just work all on its own. It managed its own state, it knew how to

© 2020 Software Engineering Daily 4

SED 1017 Transcript

fetch its own data. You could just grab an invoice component, dump it on a page, it would go

fetch that invoice and manage that all itself. Or even the more – the micro-interactions, like
drop-down menus and things. People would start pushing that state into Redux as well, which

now to use a drop-down menu component, not only do you have to bring in the component
code, but now you've got to bring in these things called reducers and then you've got to

combine that reducer into your application reducer.
Basically, if you pushed all of your state into Redux, all the state of your app, which is what a lot

of people did, or at least felt they were supposed to do. If you push all that state into Redux,
then there's no encapsulation and now you're just building a monolith. When you don't have

encapsulation, you also have a harder time composing things together in ways that you didn't
expect to. Yeah, I just felt that idea of shoving all your state into Redux hurt the idea of React,

that you can just have one small piece of the page take care of itself. I gave a talk about this
years ago at React Rally.

[0:10:05.7] JM: I mean, that's a great point, because I feel in – when I took computer science

classes, there was a distinct anti-pattern around global variables. I just remember being told by
people reviewing my code, or computer science professors that you need to be very careful with

global variables. You can get very carried away and it's a dangerous pattern.

[0:10:30.9] RF: Yup. Yup. I mean, that's basically how Redux got used. There was education
material and conversations on Twitter and conference talks that you need a state management

library, like Redux in order to use React. Everyone would just shove all their state in it. In fact, I
got up in front of one of our workshops. There were there about 60 people in the room. It was a

React fundamentals workshop, so we start showing them React. I showed them, back then it
was with a class component, just the function this .set state in a component, which is how you

update an individual component, just itself.

You call it set state, give it some values and then React will update the screen for you based on
that new state. I started getting all these puzzled looks from everybody. Oh, that. Sorry. Sorry,

this was an advanced workshop, because they had been using React for a couple of years.
Everyone was just looking at me all weird and in the first break, a few of them came up like,

“What is this .set state? I thought we can't do that.” I was like, “What do you mean you can't do
that?” They open up their laptop and showed me and they had a lint rule. In JavaScript, you got

© 2020 Software Engineering Daily 5

SED 1017 Transcript

linters to keep you from, I guess, using the bad parts of JavaScript or whatever. They had a lint

rule that disallowed them from using the primary API of React, which was set state. They could
not even use React state. They had to use Redux as state. Yeah, it was a wild time.

[0:12:01.3] JM: As we move forward in the timeline of React, you mentioned Hooks as

transformational. Can you explain what Hooks are and how they have changed application
development?

[0:12:14.1] RF: Yeah. Hooks and React, they give us a new layer of composition. We had it

before you could twist components around. A component, generally think of something that you
can see on the page, right? It actually renders some HTML. Before Hooks, if you wanted to

abstract some behavior that didn't have any UI, say you wanted to abstract subscribing to the
scroll position of the window, or you wanted to abstract reading and writing to local storage, or

maybe you wanted to get the user's geolocation, the browser has an API to say, “Hey, what's the
geo position, or geo location of the user right now?” None of those concerns have a UI, right?

There's nothing you see. There are no elements you need to render.

In React, the only tool we had was a component. We started building these funny components
that didn't render anything. They didn't return any elements. We just used them for their side

effects. Then through some really terrible looking syntax, we called them ‘render props’. Instead
of passing elements into the content, or the children of a component, you'd give it a JavaScript

function. Then that function could then yield out to you whatever state you were finding, that
local storage value, or that scroll position, or the geolocation of the user. Then you could use

that data to render some UI.

It worked great. I loved doing it that way. We were twisting components into something that they
weren’t for the sake of encapsulating that behavior and then sharing that behavior, or sharing

that state that have figured out with the rest of your application. We didn't have a great way to
compose non-visual behavior. Hooks gives us that ability to compose non-visual behavior.

Instead of having to do those kinds of things in components, we have these Hooks. There are
just a few basic ones. There are a couple for state, use state and use reducer.

© 2020 Software Engineering Daily 6

SED 1017 Transcript

If you use these hooks, then those will cause your component to re-render. Those then can be

composed inside of – or sorry, let me back up. We got the couple for state. Then we've got one
called ‘use effect’. Use effect is the thing that allows you to – it's the lifecycle of the component,

right? The component just showed up in the page, now we want to go fetch some data or
subscribe to the user’s geolocation.

When you mix effect and use effect and use state, these two hooks, you can now make your

own hook. You can make your own hook called ‘use scroll position’. Then inside of that function,
and that's what's beautiful about these hooks is they're just functions. There's no API to say to

React, “Hey, this is a hook.” It's literally just a JavaScript function. If you use state and you use
effect inside of your own custom, use scroll position, you can return out of that thing, the scroll

position and you can subscribe to the window scroll event in the effect. Then in that effect, you
can set the state of your use state hook that you made.

You can encapsulate all of that, the state of the position, the behavior to subscribe to that, even

clean up, so that when the component on that you want to stop subscribing to that, and then you
just return out whatever your current state is. Now anyone, anywhere can just bring in your one

little function, use scroll position. Whenever the scroll position changes, it’s going to cause the
component you used it in to re-render and it's going to return to you what the user’s location is.

Now instead of us having to twist components to share this behavior, we get plain functions.

That means we get composition for free. These are just functions. You can compose these the
exact same way you compose any functions, which I think is super cool.

[0:16:12.3] JM: A hook sounds similar to unobservable from there's the library RxJS, which

allows you to build reactive systems in JavaScript out of observables that emit these events.
How is a hook different than an observable?

[0:16:31.2] RF: I'm not incredibly familiar with RxJX. I have goofed with it a few times. Maybe

people will be like, “Ryan doesn't know what he’s talking about here.” To me, observables have
a push API, right? They push values to you. You'd subscribe to a thing and then give it a call

back and then it's going to push those values to you.

© 2020 Software Engineering Daily 7

SED 1017 Transcript

A hook, you pull values. It has a return value. Instead of a callback where a value gets pushed

into the callback, instead you get to ask for a value when you want it. For me, that's the main
difference. I find pull API is a lot more composable and just easier to deal with. I don't think there

is similars that might seem, because hooks are not a general abstraction for programming.
They're a domain-specific thing for React.

They are twisted up all in the guts of React everywhere. It's not something that you’d use

outside of React. It really just says, if you use state and you set, some new state it's going to
cause the whole thing to re-render. Then the effect hook just lets you plug into the lifecycle of

that rendering. RxJS is a general pattern for any programming. Hooks are simply for React and
its render life cycle and how to start a new one.

[0:17:49.7] JM: Right. It seems proof of the desirability of React that in its infancy, people were

contorting the React component system to fulfi ll – I mean, basically a front-end component
system, a visual component system, they were contorting it to do behavior that was non-visual, I

suppose because the basic dataflow aspects of React were so desirable that they basically
wanted – people wanted non-visual components and React just had to – to evolve over time to

accommodate the non-visual use cases in a better fashion.

[0:18:35.7] RF: It's more about composing that non-visual behavior. React has always been
able to handle it really well. With before hooks, we had class components and they had life

cycles, like did mount, did update, so you could do these non-visual behaviors after the
component mounted, or after it updated. You could change the state of a component. Then in

response to that, do some side effect that was non-visual.

I don't want to give the impression that React couldn't do non-visual behavior. Well, it did a great
job of it. In fact, I had a better time in React than everything previous that I had used for non-

visual behavior. The rub was how do you share that non-visual behavior? It was easy for an
application-specific component to do these kinds of side effects, but it was hard to then take that

and turn it into a reusable chunk of code that someone else could use. That’s what hooks
brings. It doesn't let us do anything new, except it lets us compose that behavior in a better way.

[SPONSOR MESSAGE]

© 2020 Software Engineering Daily 8

SED 1017 Transcript

[0:19:40.8] JM: If you can avoid it, you don't want to manage a database. That's why MongoDB
made MongoDB Atlas, a global cloud database service that runs on AWS, GCP and Azure. You

can deploy a fully managed MongoDB database in minutes with just a few clicks or API calls
and MongoDB Atlas automates deployment and updates and scaling and more, so that you can

focus on your application, instead of taking care of your database.

You can get started for free at mongodb.com/atlas. If you're already managing a MongoDB
deployment, Atlas has a live migration service, so that you can migrate your database easily

and with minimal downtime, then get back to what matters.

Stop managing your database and start using MongoDB Atlas. Go to mongodb.com/atlas.

[INTERVIEW CONTINUED]

[0:20:39.2] JM: There's a term that I've heard associated with the lifecycle of components
called ‘prop drilling’, that apparently you've coined this term. Can you explain what the term

‘prop drilling’ means?

[0:20:54.7] RF: A long time ago when I very first started using React, I was working at an
education company called Instructure, making a learning management system. I really loved

React. I've been goofing around with it up on my own. We decided to start adopting it and using
it for some of our new code. I was trying to come up with a little mini-workshop for my team, a

little two, three-hour thing. I was just trying to think of the topics of what do you need to know to
use React well? In a couple hours, what do you need to know?

One of the things that I really focused on in there in that material was this idea of prop drilling,

which is in React, you're – it's like HTML. You can think of React components like your own
custom elements a little bit. If you've got state in one component, maybe high up in the element

tree and you want to get that state down low to something down at the bottom, maybe you've
fetched all your users at the top of the app and you're making a whole list of those users and

then maybe all the way down, there's this little avatar component for just one of the 100 users
on the page, and you want to get that user’s avatar down to them.

© 2020 Software Engineering Daily 9

SED 1017 Transcript

You've got to pass that user object several layers down. You take it from the parent component,
pass it to one of its children, that children takes that problem, passes it to the next child and that

one takes that problem, passes it to the next child. You may find that you do that five, six, 10
levels down. What really happens is when you start refactoring, you start identifying pieces of

your app. You identify the avatar component itself, where maybe that was just in-line of your list
at first and you're like, “Hey, let's make an avatar component.” Now you got to pass that user to

it.

That's what I called prop drilling. It's like, you have to drill this hole through all of these
components that maybe don't really care about that prop, but they need it just to be able to keep

on passing it down the tree. Then that the second part of that is to get data from down low in the
element tree back up to the top. Maybe someone like clicks ‘delete user’ or something. That's all

the way down six levels in some user component, you've got to get that action that they want to
delete the user, all the way back up to the component that owns it. Maybe you’re six levels up

from there.

Not only do you have to drill that prop down, this is why I came up with word drill is it's not so
much about passing the prop down, it's about sending the information back up. If you send that

data down six levels, you also have to send a function down all of those six levels. That's the
hole that you drilled to then be able to throw that information back all the way up the tree.

[0:23:38.0] JM: You run React Training. These concepts that you're explaining, these are things

that you teach in workshops and training scenarios. When you're teaching professional
developers React, what are some of the common misunderstandings, or confusion points that

you encounter?

[0:24:00.1] RF: Oh. I think one, well really, just JavaScript pretty much. We like to joke that our
workshop is actually just a JavaScript workshop in disguise as a React workshop. Yeah, there's

a lot of just JavaScript education that goes along with it, because React gets out of your way
really quickly. Once you get the basic idea of elements and components, it's really just

JavaScript. It's almost one of our instructors, David. He's like, “JavaScript’s almost mean about
that puts JavaScript in your face.”

© 2020 Software Engineering Daily 10

SED 1017 Transcript

Outside of that, just how the render lifecycle that takes a little bit to help people understand how
that works, because you're just looking at a function and somehow magically you call set state

inside of there and then everything updates and all your variables are brand new inside of the
function. What does that mean? We got to talk about function closures and scope.

Before hooks, we talked a lot about JavaScript context and this, this keyword doesn't work quite

the same in JavaScript as most people expect it to. Yeah, and then I guess we've touched on
this, that there's a misconception a lot of times that React can't manage state when that's half of

what the library is is managing state. You don't have to bring in Redux or MobX or some of their
state management thing. We did it for a couple of years before Redux even showed up. Yeah,

Redux or React can manage its own state. I don't know if there are any other common
misconceptions other than that.

[0:25:31.3] JM: I'd like to talk to you about the broader space of React application development.

One thing I've talked about to a couple other guests recently is the type of frameworks that you
can use when you're building a new React application. Today as I understand, the most

prominent frameworks are you have create React app, which is typically for more boilerplate
applications. You have Next.js, which is for I guess more sophisticated applications and when

you want some complex choices of server-side rendering versus client-side rendering, for
example. Then you have Gatsby, which I guess is its own thing. How would you contrast these

frameworks?

[0:26:18.7] RF: They all have I think their sweet spot, but they're all very capable. Create React
app is probably the simplest one. It doesn't do any server rendering. It doesn't do any – it's just

you want to do a React app, but you don't want to learn Webpack is basically what create React
app is for. You can just from the command line say npx create React app my app, whatever the

name is and it'll just give you a big boilerplate for what people call a single-page application.
There's no server. It's just a JavaScript bundle. You can deploy that anywhere.

Now you can use create React app and then server render that thing, but you're going to have

to write your own code for that. Create React up will create the bundle for your app and you can

© 2020 Software Engineering Daily 11

SED 1017 Transcript

actually then take that bundle and server render it yourself. Yeah, like I said, you'll be right in

your own code there. If you just want to get started with React, that is absolutely the way to go.

I think our website for a little while, now it was our own thing. But it wasn't really different. We
didn't do server render or anything and we still got organic Google search result hits. It all

worked out fine. Then you've got – let's talk about Gatsby. Gatsby, it's not only this, but it's the
way that helps people understand it the most is think of a static site builder. I used to see, use

one in Ruby called manic, I think. There's a really popular one in Ruby. I forgot what it's called.
Jekyll, is that what it is?

[0:27:50.0] JM: I don't know if that's Ruby specific. I've never heard of Jekyll. Hugo.

[0:27:55.2] RF: That’s a static site builder, right?

[0:27:56.5] JM: There’s Hugo and Jekyll. I think those are both the static site builders.

[0:27:59.8] RF: Yeah. Yeah. The idea is you can write some code. It's like you're on a server,

right? You get to build these abstractions and share code and use code to generate your user
interface. At the end of the day, you're just going to ship some HTML, so there's a little build

process to take your code, that then spits out some HTML and then those are just flat fi les that
you could upload to a CDN or something.

Like I said, Gatsby isn't just a static site builder, but that its foundation. You can still build really

cool dynamic things with it as well. What it does is it'll take all of static markup, but then when
the page loads, it then layers the React app on top of it. I guess, it's server rendering. It's CDN

rendering, flat file rendering. That's the fastest way to do it.

Then the JavaScript downloads layers over the top a client-side router, the events, dynamic
behavior, all that stuff. Now as the user navigates around Gatsby who has already eagerly

loaded the pages that they're probably going to go to next. Well, it's not that smart about it, but
it'll preload the other pages in the app. Now when you click on a link, you're going to get there

instantly without a full server hip.

© 2020 Software Engineering Daily 12

SED 1017 Transcript

Then Next.js, they’ve made some changes recently that I haven't kept up on. I've been pretty

busy over here working on our company. Next.js also has this same ability that Gatsby does to
compile it down to a static site, that then layers JavaScript on top of it. It goes a step farther and

actually does some server-side rendering. Your code actually runs on the server when the user
hits the page. This allows you to do more dynamic things; for example, fetch some data.

They've got some hooks in there. I think it's called get initial props or something like that, or they
may have changed it.

When the user hits the page, you can go fetch data just like a normal server rendered app and

then render that data in your UI. With a static site like Gatsby, you can't do that. You'd have to
know your data at build time, so now your data is limited to when you built and then you'll have

to go fetch new stuff. Gatsby doesn't really work for data that's going to be changing a lot, like
tweets or something, right? You want to see somebody's – some new posts that are happening

a lot. Not great for a Gatsby. But Next, you can do that thing and get that more dynamic data in
the server render. They probably have other stuff in there now too that I don't know about, but

that's the difference is your code actually runs on the server before you send the page.

[0:30:31.8] JM: Got it. The next thing I want to talk to you about is GraphQL. I know that if
you're a sophisticated React developer, you're often building your new applications using

GraphQL, but it's obviously not a necessity. When you're talking to people that you're teaching
React, do you try to prescribe that they should use GraphQL from day one? Or do you just

ignore GraphQL, because it would introduce more complexity?

[0:31:02.9] RF: Yeah, with our workshops, we don't cover a whole lot with GraphQL. It's a really
interesting technology. We're in the middle of building something new that we're not ready to

announce or anything yet. We're going to start with GraphQL from the beginning. Just talking to
some people from my previous job and they've started using GraphQL and having a lot of

success. It is a great way to work with data over a network. You have two choices; you can
either – I guess you got three choices. Either build one-off endpoints for each screen that you

build, right? This is our gradebook. If I'm going to render this gradebook, what data do I need?
You can make an endpoint on your server that says, “Here's all the data you need for the

gradebook.”

© 2020 Software Engineering Daily 13

SED 1017 Transcript

Or you can do a more restful approach. If you take rest to its logical conclusion than most your

UI, you're going to have to be making 70 requests to the server in order to get all of the data
that you would need for a more complex UI, or at least a dozen, right? You're going to have to

hit a lot of endpoints. Then the client, you're going to have to construct that stuff back together
into objects and stuff, or build those relationships inside of the client.

What would be best is if we get to send SQL over the network, right? Just send a SQL query

over there, or SQL. I never know how I'm supposed to say that. I think of GraphQL as being
able to just send a database query over the network. It's a safe query language for the network.

You can just say, “This this is what I need.” Instead of writing a SQL query, I write a GraphQL
query. How that's handled on the back-end, there's a lot of ways to do it. You can you can have

a GraphQL first API, I guess, database, something Hasura, if you've ever heard of that really
cool project. It's backed by PostgresSQL.

Or you have your existing REST API, you have your existing databases, you can build a layer in

front of it, so that your client applications can just send GraphQL and then your server, instead
of your client, your server can then figure out, “Okay, what are the 12 REST end-points I need to

hit to get all of this data?” Because if the client has to do it, then every page that needs that data
has to do this and every app that your Android app, your iOS app, your handful of web apps, all

of them are going to have to be doing these shenanigans of getting the whole data for this
complex page together.

GraphQL, especially with a node server in between your client apps and your real database is a

really great way to just simplify all the code and all of your clients and give yourself a query
language over the network.

[0:33:50.4] JM: You and your co-founder of React Training, Michael Jackson, you're both

known for helping create React Router. I just like to get your perspective on React Router and
how its usage has evolved over time and how the how the project has evolved over time.

[0:34:10.1] RF: Yeah. We released that as we were learning React. You can just look at React

Router and the APIs and you can just see the two of us learning React is really probably the
best way to describe it. Yeah, so in the beginning – actually, the very, very, very first one we had

© 2020 Software Engineering Daily 14

SED 1017 Transcript

was it was one of our better ones. It was so early. Everyone wanted data – or they wanted a

server rendering and all this other stuff. We didn't know what we were doing, and so we came
up with these APIs that were okay. That's what V3. Version 1, 2, 3, all almost identical. We had

to make a couple of tweaks to a couple APIs and break them. Version 1, 2 and 3 are basically
the same thing.

We still support V3. You can run React Router V3 on a React 16.9, I think is what we're at right

now. Thanks to Tim Door. He has been diligently maintaining that for years. One day, Michael
and I had given a workshop. I can’t remember the city we were in, like Chicago or something.

We were standing at the elevator, because we just finished the workshop talking about React
Router. We were talking about how awkward it was for us in our workshops, because we would

do these two days, show people all these cool patterns, different ways to compose with React,
different ways to share behavior and state.

Then we'd get to the lesson on React Router and it was like, “Forget everything we just taught

you. It doesn't work here.” We were like, “What have we learned now about React that we can
take to React Router?” That's where React Router version 4 came from. It was big API change,

upset a lot of people, but I mean, we were learning React with everybody else too. We're just a
couple of guys trying to run a company. I think it was a good choice and it just made everything

a little bit more dynamic.

I keep using that word composable. It'd be hard to really explain why they React Router API was
more composable without throwing some code in front of us. It took all the principles of React

that we taught in our workshops and that as a community, we had all learned and we applied it
to React Router. We just hung out like that for a few years, honestly. I think three, four years

now we haven't touched that API. Maybe we're a little bit scared of getting everyone angry again
by changing an API, because React, React is pretty much always backwards compatible.

For a library like React Router, it's a little bit harder to maintain that, because we're a level away

from React, right? If we want to use the new React features, we'll probably end up breaking
something of ours.

© 2020 Software Engineering Daily 15

SED 1017 Transcript

Anyway, so we went a few years no API changes. Now we just released on Friday last week

React Router version 6 alpha. Four and five are pretty much synced to that. We made a little
change in there. We added some hooks in version 5, but we didn't break any API there. V6 now,

we've updated all the code to use hooks. We've made it a whole lot smarter. We have this
matching algorithm now that gets rid of a bunch of problems that we had before with that people

had to do themselves constructing up their routes. It's half the size of what it used to be.

It's got a whole bunch of more features, it's more composable, it's smarter. We have these
things called relative routes and links now. You used to have to construct the entire URL for your

link. Now it's smart enough to just inherit the link above it, or the route above it. Yeah, and it's
half the size. We're really excited about it. We've got even bigger plans for it as well, but we

want to get this to a stable 1.0 release first. Or sorry, 6.0 release.

[SPONSOR MESSAGE]

[0:37:53.6] JM: DigitalOcean makes infrastructure simple. I continue to use DigitalOcean,
because of the low friction and attention to user experience. DigitalOcean has kept the

experience simple and I can spin up a server in less than a minute and get high-quality
performance for a low price.

For an application that needs to scale, DigitalOcean has CPU-optimized droplets, memory-

optimized droplets, managed databases, managed Kubernetes and many more products.
DigitalOcean has the flexibility to choose the right instance for the right workload and you can

mix and match different configurations of CPU and RAM.

If you get stuck, DigitalOcean has thousands of high-quality tutorials, responsive Q&A forums
and a customer team who treats customers respectfully. DigitalOcean lets developers focus on

what they are building.

Visit do.co/sedaily and receive $100 in credit over 60 days. That $100 can be put towards
hosting, or infrastructure and that includes managed databases, a managed Kubernetes service

and more. If you want to get started with Kubernetes, DigitalOcean is a great place to go. You

© 2020 Software Engineering Daily 16

SED 1017 Transcript

can use your $100 to start building your distributed system and you can get that $100 in credit

for free at do.co/sedaily.

Thank you to DigitalOcean for being a sponsor of Software Engineering Daily.

[INTERVIEW CONTINUED]

[0:39:29.1] JM: On the subject of routing, whenever I'm using a native app, routing always feels
so much smoother than when I'm using a browser-based application. Why does routing and

state transition for native apps feel so much more smooth than if I'm on the browser?

[0:39:49.4] RF: Oh, probably because React Router is slow. I'm just kidding. What's funny
about a web app is instead of a website, I guess, is that you're actually an application inside of

an application. A native app that you get the whole screen, you get everything. You can even
control the color of the status bar. In a website, you don't even get to control what happens

when they swipe from the left side of the screen, or when they start scrolling. What happens to
the UI on iPhones anyway? The whole UI shifts around when you start scrolling. The address

bar shrinks, the buttons of the bottom slide away and then you scroll up, then everything shows
up again. You still have the control and swiping left to navigate back on native, on an iPhone

you can't do that on the web, because that is already built in for what the browser does.

There are interactions that we just – they don't let us do, because there's no way to say, “Hey,
web browser, get out of here and let me do my own gestures.” Then yeah, I don't know. Well,

browsers just aren't as good at animating these devices for some reason. Like get an iPad pro, I
got a big – I got one of those big iPad pros. I don't know what they're like, 11 inches or

something.

[0:41:05.5] JM: I don't have one. I have an old bad Kindle Fire that I don't use anymore, but I
have not really – I've not been subsumed into the world of tablet computing.

[0:41:12.9] RF: Yeah. I've got this big iPad pro, which is actually a great digital audio

workstation with GarageBand. It's really cool experience. Anyway, its screen is basically as big
as my laptop screen. You go into the iBooks Store, which that's as big as a screen that our

© 2020 Software Engineering Daily 17

SED 1017 Transcript

browsers normally have on our computer and it's got some great animations and great

interactions. I start goofing around trying to build something like that. I don't know why, but web
browsers just don't animate that stuff as smoothly and I'm using straight-up CSS transforms and

should all be hardware accelerated and it just doesn’t have the same feel.

I don't know. I'm with you. I have that same question. Why can't we make those animations feel
that nice? However on native, it is very difficult to deep link. That's a big topic on native. How do

you deep link? It happens all the time, right? You get out of an app and then you come back in
and you're not where you wanted to be. On the web, we don't have that problem. Deep linking is

– that's just what we are. That’s how it was designed. Maybe it doesn't animate or feel as
smooth, but we do have some stuff that's built in that I think is pretty cool.

[0:42:20.4] JM: Continuing the subject of various things related to React, why is TypeScript

used in so many React applications? Why is TypeScript useful?

[0:42:31.1] RF: I don't know. You're talking to a guy who's never used a type language before.

[0:42:35.0] JM: You could tell me why it's not useful then.

[0:42:39.5] RF: We actually this week have just begun the rewrite of React Router into
TypeScript. Last week, we have a project called reach UI and we just switched that over to

TypeScript as well. I'm not a TypeScript hater. TypeScript is pretty cool, because so the reason
that we're using it in our libraries is not so much for us, but for everybody else. If you install

React Router and you're using TypeScript, it's like half of people building React apps now. At
least half of our clients seem to be using TypeScript.

If you're in the React game and you're building shared components, you can't ignore TypeScript.

We were doing our own types just two separate files, but we weren't actually authoring in
TypeScript, but then they get out of date, or they might be wrong, which is a risk there, so we

were like, “Let's just do it. Let's just write it in TypeScript.” Reason number one is because
everyone's using – or not everyone. A lot of people are using TypeScript and we want our types

for them to be reliable and for them to know that they're going to be correct. They're not just
some afterthought. That's first reason we did it.

© 2020 Software Engineering Daily 18

SED 1017 Transcript

The second reason is the intellisense, the hints, the popups when you're writing your code are
really cool. We document our APIs, we have all these different types of properties that our

components can take and people don't read the docs. If you use in TypeScript, you start typing
a route or a menu button or a combo box and you get this nice little pop-up of exactly what

props it takes and what those types are. That is huge for people. If you haven't done it, you don't
quite get it. You're like, “Oh, no. I know the React API. I'm fine.” You get into a code base with a

lot of shared pieces, it is really nice to be able to know what types it accepts and if you're doing
the right thing.

[0:44:23.9] JM: The application architecture for something built in React, it's evolved as new

primitives have gotten introduced in to the programming framework. We've talked about hooks,
we've talked about Redux. There's also Suspense. Suspense is a newer primitive that can help

with asynchronous data loading. How does Suspense improve the application experience for
the end-user and what does the programmer do to use Suspense?

[0:44:54.5] RF: They've been goofing around on Suspense for a long time. It's really promising

I'm really excited about it, but it is still yet to be seen what that's going to shake out to look like,
or be. The idea is in React when you change state, you click a button, you click a link to a new

route and the screen changes. A lot of time, you need to go and fetch some data. In React, it's
not going to wait for that data. The new screen shows up. We've all used these apps where you

click something and then you get a face full of spinners. Then you get this really choppy loading
experience, as all these different spinners finish loading their data and now you've got a page.

With a slow network, it's not terrible, right? You click, you get some immediate response from
the UI that your click worked and then you get a bunch of spinners and then if you wait a second

or two, or five seconds, it's fine. The data shows up and you're not too upset. The app felt
responsive the whole time.

The problem shows up when the app is – or when the network is fast, because when the

network is fast, you click a link and then it's like, some pages with their spinners and stuff, it's
like, I don't know. It's just it's so bouncy and so flashy, so quick. Within 500 milliseconds, you

see several things show up and then disappear and then new things show up. It just feels

© 2020 Software Engineering Daily 19

SED 1017 Transcript

terrible when you have a fast network and synchronous rendering is I guess, what we could call

it.

To fix that problem, you have to move all of that data loading logic higher and higher and higher
in the app, until maybe you're at the very top. You don't have a whole lot of control over when to

finish that transition to the next page. You can move all the data up to the top and always wait
for all of the data. You click a link. Let's just keep the old screen on the page and just sit here

until all the data shows up and then go to the next page.

That'd be great for a fast network, because you're going to click a link and you'll feel like you get
there pretty quickly and you weren't sitting on that page. For a slow network, that's terrible,

because now you're just looking at the old page for a really long time. Maybe you got six pieces
of data and four of them are there and they're the four that matter. The other two are just some

who knows what. It would be nice to be able to transition to the next page if you had those four
pieces of data, even though you don't have the other two.

Suspense lets us bend all of those trade-offs. Instead of having to move all of our fetching code

all the way up to top, you can keep some of it closer to the UI that needs it. You'll still want to
probably move some of it up, but that's a different conversation. Then Suspense will allow you

to adjust to the network. If the network is fast, suspense is going to let you wait for all of that
data, so that we're not flashing spinners at people. If the network is slow, maybe we'll hang out

on the old page for a little bit after you click a link and then we've got four of the six pieces, it's
been two seconds, let's – or one second. Let's go to the next page and show them the content

we have, but then have spinners up for the content that we don't.

It's really a set of tools that are going to help us declaratively orchestrate this stuff. It probably
sounds like you have to do a lot more than what you really need to do. You don't have to specify

okay, these pieces. I'll wait for these ones. I won't. Just by placing some components in the right
spots, we'll be able to bend all those trade-offs and be able to give a great experience for people

with a fast or a slow network when you've got asynchronous stuff.

Another thing that's cool about it is you can force the order of asynchronous things. Imagine a
bunch of images on the page and a bunch of tiles, let's say. When all those tiles come in the

© 2020 Software Engineering Daily 20

SED 1017 Transcript

wrong order, it feels weird to the user. There's this thing called suspense list and that will allow

you to say, “Hey, you can show loading indicators on these things, but don't do them out of
order.” If you've got 12 tiles on the page, if the 12th one loads it's not going to show up until the

11th one loads. It gives this really great experience where they all load in in order, instead of the
choppy whack-a-mole feeling.

Yeah, just lots of little tools. Not lots. A couple little tools to help us orchestrate the asynchronous

behavior that we have in a user interface to try to get rid of the choppiness, get rid of too many
spinners and get rid of the whack-a-mole feel when a page loads up.

[0:49:28.2] JM: There's a large market of people who are teaching JavaScript and people who

are teaching React, more specifically. Has it gotten too crowded? Are there too many JavaScript
educators at this point? Or has there never been enough JavaScript education and the market

is just starving for more information about JavaScript?

[0:49:53.2] RF: You know what cracks me up is when somebody makes a blog post or
something, or tweets, or whatever and then somebody else is like, “Yeah, this is just computer

science from 40 years ago thing. We already knew this. You think that you're the one coming up
with this new idea or this new programming language, or this new framework? It’s just

reinventing ideas that we already knew.”

That always cracks me up, because what that means is that the programming community has
failed to teach what it has learned to the next generation. We're not going to reinvent those

concepts if they were continually taught from more than they were discovered. Yeah, I think
there are lots of people that are amazing programmers, there are lots of people that are

amazing communicators in the Venn diagram, the intersection.

I think there's a lot of people that have both of those skills. We just haven't really rewarded the
communication side very much. We have this stereotypical idea of the hermit programmer, who

just wants to be left alone and has no social skills. It's not how it is at all. There's so many
interesting programmers who can communicate well too. I think we're just now seeing that with

the Internet, we're able to incentivize people to actually teach what they've learned.

© 2020 Software Engineering Daily 21

SED 1017 Transcript

I don't feel like it's crowded. We're growing. We're used to just be Michael and I and now we've

got some employees, we got some contractors. I think, we have a team of eight people now
running our company, involved in one way or another and we're still growing. No, it doesn't feel

crowded to me. One of the things that I do to check, to try to estimate how many people are
using React or Angular or Vue, or anything is to look at the Chrome's – the developer tools for

React on the Chrome – what's it called? The Chrome store. There's 2 million people who have
the React developer tools installed. 2 million. That's a ton of people and that's just React. I think

there's plenty of room.

[0:51:52.8] JM: It's true. It's really hard to benchmark how many developers there are in the
world.

[0:51:57.1] RF: Yeah, there's tons. There's tons. We mostly do training for companies in the US.

Although, we got people go into Ireland and Australia and shoot, where else? We got four
international ones coming up here soon. We're mostly in the US. Our online stuff, our online

stuff is mostly outside of the United States.

It's easy for me as someone from the United States to just think about that's the whole world
when it's totally not. Yeah, online, man, you can reach everybody and there are tons of people

out there wanting to learn how to program, or get better at it.

[0:52:31.6] JM: All right. Well, Ryan Florence, it's been really great talking to you. Thanks for
coming on Software Engineering Daily.

[0:52:35.9] RF: Yeah, thanks for having me.

[END OF INTERVIEW]

[0:52:46.6] JM: As businesses become more integrated with their software than ever before, it

has become possible to understand the business more clearly through monitoring, logging and
advanced data visibility.

© 2020 Software Engineering Daily 22

SED 1017 Transcript

Sumo Logic is a continuous intelligence platform that builds tools for operations, security and

cloud native infrastructure. The company has studied thousands of businesses to get an
understanding of modern continuous intelligence, and then compiled that information into the

continuous intelligence report, which is available at softwareengineeringdaily.com/sumologic.

The Sumo Logic continuous intelligence report contains statistics about the modern world of
infrastructure. Here are some statistics I found particularly useful; 64% of the businesses in the

survey were entirely on Amazon Web Services, which was vastly more than any other cloud
provider, or multi-cloud, or on-prem deployment. That's a lot of infrastructure on AWS. Another

factoid I found was that a typical enterprise uses 15 AWS services. One in three enterprises
uses AWS lambda. Appears serverless is catching on. There are lots of other fascinating

statistics in the continuous intelligence report, including information on database adoption,
Kubernetes and web server popularity.

Go to softwareengineeringdaily.com/sumologic and download the continuous intelligence report

today. Thank you to Sumo Logic for being a sponsor of Software Engineering Daily.

[END]

© 2020 Software Engineering Daily 23

